BackgroundGonadal fate in many reptiles, fish, and amphibians is modulated by the temperature experienced during a critical period early in life (temperature-dependent sex determination; TSD). Several molecular processes involved in TSD have been described but how the animals “sense” environmental temperature remains unknown. We examined whether the stress-related hormone cortisol mediates between temperature and sex differentiation of pejerrey, a gonochoristic teleost fish with marked TSD, and the possibility that it involves glucocorticoid receptor- and/or steroid biosynthesis-modulation.Methodology/Principal FindingsLarvae maintained during the period of gonadal sex differentiation at a masculinizing temperature (29°C; 100% males) consistently had higher cortisol, 11-ketotestoterone (11-KT), and testosterone (T) titres than those at a feminizing temperature (17°C; 100% females). Cortisol-treated animals had elevated 11-KT and T, and showed a typical molecular signature of masculinization including amh upregulation, cyp19a1a downregulation, and higher incidence of gonadal apoptosis during sex differentiation. Administration of cortisol and a non-metabolizable glucocorticoid receptor (GR) agonist (Dexamethasone) to larvae at a “sexually neutral” temperature (24°C) caused significant increases in the proportion of males.Conclusions/SignificanceOur results suggest a role of cortisol in the masculinization of pejerrey and provide a possible link between stress and testicular differentiation in this gonochoristic TSD species. Cortisol role or roles during TSD of pejerrey seem(s) to involve both androgen biosynthesis- and GR-mediated processes. These findings and recent reports of cortisol effects on sex determination of sequential hermaphroditic fishes, TSD reptiles, and birds provide support to the notion that stress responses might be involved in various forms of environmental sex determination.
Formation of spherical nanoparticles ͑hereafter "nanoballs"͒ in a gas/liquid mixed dual phase system during plasma electrolysis is reported. A gas/vapor sheath is formed at the electrode/ electrolyte interface when the applied voltage is high enough to induce discharge plasma. Through this nonequilibrium process, the authors have produced Ni, Ti, Ag, and Au metallic nanoballs from the cathode mother materials with a certain size controllability. The electrode surface is partially melted by the local current concentration induced by electrothermal instability followed by an immediate cooldown, yielding nanoballs without contamination from electrolyte.
To investigate molecular and clinical aspects of conotruncal anomaly face (CAF), we studied the correlation between deletion size and phenotype and the mode of inheritance in 183 conotruncal anomaly face syndrome (CAFS) patients. Hemizygosity for a region of 22ql1.2 was found in 180 (98%) of the patients with CAFS by fluorescence in situ hybridization (FISH) using the N25(D22S75) DiGeorge critical region (DGCR) probe. No hemizygosity was found in three (2%) of the patients with CAFS by FISH using nine DiGeorge critical region probes and a SD1OP1 probe (DGA II locus). None of these three patients had mental retardation and just one had nasal intonation, which was observed in almost all of the 180 CAFS patients who carried deletions (mental retardation, 92%; nasal voice, 88%). Nineteen of 143 families (13%) had familial CAFS and 16 affected parents (84%) were mothers. Although only two of the affected parents had cardiovascular anomalies, the deletion size in the 16 affected parents and their affected family members, who were studied by FISH analysis, was the same. It indicates that extragenic factors may play a role in the genesis of phenotypic variability, especially in patients with cardiovascular anomalies. No familial cases were found among CAFS patients with absent thymus/DiGeorge anomaly (DGA). Also, in all 18 CAFS patients with completely absent thymus/DGA and all 6 CAFS patients with schizophrenia, it was revealed that the deletion was longer distally. A study of the origin of the deletion using microsatellite analyses in 48 de novo patients showed that in 65% of CAFS patients it was maternal, while in 64% of DGA patients it was paternal. The findings of this study indicated that CAF was almost always associated with the deletion of 22ql1.2. As well as the major features of the syndrome, other notable extracardiac anomalies were found to be susceptibility to infection, schizophrenia, atrophy or dysmorphism of the brain, thrombocytopenia, short stature, facial palsy, anal atresia, and mild limb abnormalities.
The developmental time and thermal threshold for temperature-dependent sex determination (TSD), gender differences in temperature sensitivity, the fertility of thermally sex reversed fish, and the effect of temperature on the expression of two major sex determination/differentiation genes (DMY/DMRT1bY and DMRT1) were examined in the Hd-rR strain of medaka, Oryzias latipes. Fertilized eggs were exposed from either shortly after fertilization (8–16 cells; embryonic stages 5–6) or from middle embryogenesis (heart development stage; stage 36) until hatching to temperatures ranging from 17°C to 34°C. Secondary sexual characteristics, gonadal histology, progeny testing, sex-linked body coloration and gene expression were used to determine phenotypic and genotypic sex. Sex determination was unaffected by low or high temperatures in genotypic (XY) males. In contrast, genotypic (XX) females treated from stages 5–6 showed increasing rates of sex reversal into phenotypic males at temperatures above 27°C up to 100% at 34°C. Thermal manipulation of sex was ineffective after stage 36, indicating that gonadal fate in medaka is determined considerably earlier than histological differentiation (stage 39). High temperature induced DMRT1 expression in genotypic females, which was observed already from stage 36. Sex-reversed males had histologically normal testes, were capable of sexual courtship and, with the exception of fish from 34°C, sired viable progeny when mating with fertile females. These results clarify the pattern of TSD in medaka and provide important clues to understand the mechanism of sex determination in this species. They also suggest that a brief exposure to high temperature early in life could impair the fertility of medaka as adults.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.