Laser floating zone textured Bi 2 Sr 2 CaCu 2 O 8+δ (Bi-2212) thin rods were manufactured and subjected to a two-step annealing process at 870 • C and 801 • C in air. It was found that the subsequent cooling process led to marked changes in electrical properties. Three cooling rates were tested: (i) quenching in liquid nitrogen, (ii) cooling in air inside an alumina tube and (iii) cooling inside the furnace. The results showed that the faster the cooling rate, the higher the normal state resistivity. The T c distribution across the rods was also affected by the cooling rate, but no large differences were observed in the magnitude of the critical current at 77 K since the homogeneity of furnace-cooled samples compensated for the higher outer J c values of fast-cooled ones. The mechanical properties (elastic modulus and flexure strength) were not influenced by the cooling rate, but the samples quenched in liquid nitrogen were often cracked by thermal shock. The elastic modulus and the flexure strength of the rods were deteriorated by the existence of an outer ring of compact, poorly textured material and by the large bubbles found in the central region of the rod. Samples processed by a two-step texturing process which reduced the thickness of the outer ring and eliminated the bubbles had better electrical and mechanical properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.