Surgery was the most reliable treatment method for OVC; however, radiotherapy combined with chemotherapy was the next most preferable treatment when surgery was not undertaken. We also found that highly malignant transformation (anaplastic transformation) occasionally occurred during treatments for OVC.
We have reported the purification and characterization of arginine-specific ADP-ribosyltransferase from hen liver nuclei [Tanigawa, Y. et al. (1984) J. Biol. Chem. 259, 2022-2029] and the DNA-dependent mono(ADP-ribosyl)ation of p33, an acceptor protein in the nuclei [Mishima, K. et al. (1989) Eur. J. Biochem. 179, 267-273]. In the present study, we obtained evidence that among various tissues and cells from chicken, polymorphonuclear cells, so-called heterophils, possess both the ADP-ribosyltransferase and p33 at high levels. Percoll density gradient centrifugation of the postnuclear fraction of the heterophils revealed the co-localization of ADP-ribosyltransferase with p33 in the granule fraction. The enzyme and p33 were purified approximately 219- and 3.77-fold, respectively, from postnuclear pellet fraction to apparent homogeneity. The properties of heterophil ADP-ribosyltransferase and p33 were compared with those of the liver enzyme and p33. The molecular mass of the heterophil enzyme was estimated by SDS-polyacrylamide gel electrophoresis to be 27.5 kDa. The enzyme activity was stimulated by a sulfhydryl agent and inhibited by lysolecithin, NaCl, and inorganic phosphate. The mono(ADP-ribosyl)ation of p33 was markedly enhanced by polyanion, such as DNA, RNA, or poly(L-glutamate). SDS-polyacrylamide gel electrophoretic analysis after limited trypsin proteolysis of p33s, purified from chicken heterophils and liver, showed much the same pattern. Thus, it appears that ADP-ribosyltransferase and p33 present in heterophils are identical to those in the liver, respectively. p33 is considered to be an in situ substrate for ADP-ribosyltransferase, since it was specifically mono(ADP-ribosyl)ated in permeabilized heterophils.(ABSTRACT TRUNCATED AT 250 WORDS)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.