The present study was performed to establish a novel ocular surgery simulator for training in peeling of the inner limited membrane (ILM). This simulator included a next-generation artificial ILM with mechanical properties similar to the natural ILM that could be peeled underwater in the same manner as in actual surgery. An artificial eye consisting of a fundus and eyeball parts was fabricated. The artificial eye was installed in the eye surgery simulator. The fundus part was mounted in the eyeball, which consisted of an artificial sclera, retina, and ILM. To measure the thickness of the fabricated ILM on the artificial retina, we calculated the distance of the step height as the thickness of the artificial ILM. Two experienced ophthalmologists then assessed the fabricated ILM by sensory evaluation. The minimum thickness of the artificial ILM was 1.9 ± 0.3 μm (n = 3). We were able to perform the peeling task with the ILM in water. Based on the sensory evaluation, an ILM with a minimum thickness and 1000 degrees of polymerization was suitable for training. We installed the eye model on an ocular surgery simulator, which allowed for the performance of a sequence of operations similar to ILM peeling. In conclusion, we developed a novel ocular surgery simulator for ILM peeling. The artificial ILM was peeled underwater in the same manner as in an actual operation.
Poly(vinyl alcohol) (PVA) is a biocompatible polymer with low toxicity. It is possible to prepare physically cross-linked PVA gels having hydrogen bonds without using a cross-linking agent. The newly reported physically cross-linked PVA cast-drying (CD) on freeze-thawed (FT) hybrid gel has an excellent friction property, which is expected to be applied as a candidate material for artificial cartilage. Gamma ray sterilization for clinical applications usually causes additional chemical cross-linking and changes physical properties of gels. In this study, CD on FT hybrid gels were irradiated using gamma rays at a different dose rate and irradiance. The results showed the optimized irradiation conditions for gamma irradiated gels to retain excellent friction characteristics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.