The aim of this study was to examine whether xanthine oxidase (XOD)-derived hepatic oxidative damage occurs in the main not during but following strenuous exercise. The degree of damage to hepatic tissue catalyzed by XOD was investigated immediately and 3 h after a single bout of exhausting exercise, in allopurinol and saline injected female Wistar rats. Allopurinol treatment resulted in increased hypoxanthine and decreased uric acid contents in the liver compared with the saline treated group, immediately and 3 h after the exercise. Analysis immediately after the exercise showed no changes in hepatic hypoxanthine, uric acid, and thiobarbituric acid-reactive substance (TBARS) contents in the saline treated group, when compared with the resting controls. However, significant increases in uric acid contents in the saline treated livers were observed 3 h after the exercise, relative to the controls. Hepatic TBARS content in the saline treated group were markedly greater than those in both the control and allopurinol treated groups after 3 h of recovery following the exercise. It was concluded that a single bout of exhausting exercise may impose XOD-derived hepatic oxidative damage, primarily during the recovery phase after acute severe exercise.
Changes in electrolytes of pig pancreatic acinar cells following application of gastrin-cholecystokinin (CCK) were investigated using the technique of X-ray microanalysis of hydrated and dehydrated sections of freshly frozen pancreas. After stimulation by CCK (10(-9) M), Na and Cl increased significantly in the cytoplasm [Na, from 10 mmol/kg wet wt. (48 mmol/kg dry wt.) to 19 mmol/kg (95 mmol/kg); Cl, from 22 mmol/kg (105 mmol/kg) to 49 mmol/kg (245 mmol/kg)] as well as in the luminal interspace [Na, from 53 mmol/kg (189 mmol/kg) to 65 mmol/kg (283 mmol/kg); Cl, from 65 mmol/kg (232 mmol/kg) to 102 mmol/kg (443 mmol/kg)]. In the secretory granules Cl increased significantly from 30 mmol/kg (86 mmol/kg) to 67 mmol/kg (203 mmol/kg). K decreased significantly from 120 mmol/kg (571 mmol/kg) to 81 mmol/kg (405 mmol/kg) in the cytoplasm, while both increased from 38 mmol/kg (109 mmol/kg) to 58 mmol/kg (176 mmol/kg) in the granules and from 46 mmol/kg (164 mmol/kg) to 48 mmol/kg (209 mmol/kg) in the luminal interspace. Ca increased significantly in the cytoplasm as well as in the luminal interspace, and decreased significantly in the secretory granules. CCK evoked Ca release from secretory granules in the secretory pole of acinar cells. The values were measured from dehydrated sections, and agreed well with those from hydrated sections. The effect of furosemide, an inhibitor of the Na+-K+-2Cl- co-transporter, on the ion transport of acinar cell was studied. When furosemide (10(-5) M) was added to the external solution, the cytoplasmic Cl and Ca concentrations decreased significantly, while there was a little decrease in Na and K concentrations under the secretory condition. These results indicate that Na+-K+-2Cl- co-transport, and Na+, Cl- and K+ exits into the lumen are involved in the mechanism of ion secretion in pig pancreatic acinar cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.