The Drosophila male accessory gland has functions similar to those of the mammalian prostate gland and the seminal vesicle, and secretes accessory gland proteins into the seminal fluid. Each of the two lobes of the accessory gland is composed of two types of binucleate cell: about 1,000 main cells and 40 secondary cells. A well-known accessory gland protein, sex peptide, is secreted from the main cells and induces female postmating response to increase progeny production, whereas little is known about physiological significance of the secondary cells. The homeodomain transcriptional repressor Defective proventriculus (Dve) is strongly expressed in adult secondary cells, and its mutation resulted in loss of secondary cells, mononucleation of main cells, and reduced size of the accessory gland. dve mutant males had low fecundity despite the presence of sex peptide, and failed to induce the female postmating responses of increased egg laying and reduced sexual receptivity. RNAi-mediated dve knockdown males also had low fecundity with normally binucleate main cells. We provide the first evidence that secondary cells are crucial for male fecundity, and also that Dve activity is required for survival of the secondary cells. These findings provide new insights into a mechanism of fertility/fecundity.
Nanos (Nos) is an evolutionary conserved protein expressed in the germline of various animal species. In Drosophila, maternal Nos protein is essential for germline development. In the germline progenitors, or the primordial germ cells (PGCs), Nos binds to the 3' UTR of target mRNAs to repress their translation. In contrast to this prevailing role of Nos, here we report that the 3' UTR of CG32425 mRNA mediates Nos-dependent RNA stabilization in PGCs. We found that the level of mRNA expressed from a reporter gene fused to the CG32425 3' UTR was significantly reduced in PGCs lacking maternal Nos (nos PGCs) as compared with normal PGCs. By deleting the CG32425 3' UTR, we identified the region required for mRNA stabilization, which includes Nos-binding sites. In normal embryos, CG32425 mRNA was maternally supplied into PGCs and remained in this cell type during embryogenesis. However, as expected from our reporter assay, the levels of CG32425 mRNA and its protein product expressed in nos PGCs were lower than in normal PGCs. Thus, we propose that Nos protein has dual functions in translational repression and stabilization of specific RNAs to ensure proper germline development.
Veins are longitudinal cuticular structures that maintain shape of the wing. Drosophila melanogaster has six longitudinal veins (L1-L6) and two cross veins. The Zn-finger transcription factors of Spalt-complex (Sal) are required for positioning of the L2 and L5, and the homeodomain transcription factors of Iroquois complex (Iro-C) are required for formation of the L3 and L5 veins. The homeodomain transcriptional repressor Defective proventriculus (Dve) is uniformly expressed in the wing pouch of the larval imaginal disc. However, dve mutant wings showed loss of the L2 and L5, but not of the L3 and L4 veins. Temporal dve knockdown experiments indicate that the Dve activity is required for vein formation from late third larval instar to the prepupal stage. In the prepupal wing, Dve expression becomes nearly complementary to that of Sal through the Sal-mediated dve repression. Furthermore, coexpression of Dve and Iro-C relieved of Sal-mediated repression is required for the L5 formation in a dose-dependent manner. The relationship between Sal, Dve, and Iro-C in wing vein specification is quite similar to that in ommatidial cell-type specification. Our results provide information about the conserved function of dve regulatory motifs in cell differentiation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.