The effects of childhood masticatory function loss and soft foods on the mandibular condyle have been the subject of much research. However, the corresponding bone turnover is not fully understood. The purpose of the present study was to clarify the effects of a lack of teeth and a soft food diet during the growth period on bone turnover in the mandibular condyle. We divided 3-week-old Wistar rats into the following three groups: 1) Extraction group: The maxillary molars were extracted at the age of 4 weeks, and animals were fed powdered standard feed. 2) Powder group: Animals were fed powdered standard feed without tooth extraction. 3) Control group: Animals were fed solid standard feed without tooth extraction. Non-decalcified thin-slice specimens of sagittal sections of the mandibular condyle were obtained at the age of 20 weeks for histological analysis. We used micro-CT analysis and bone histomorphometry to measure bone volume (BV), bone mineral content (BMC), bone mineral density (BMD), bone microstructure, bone resorption, and osteogenesis in the mandibular condyle, and we compared the results among groups. In the extraction and the powder groups, we found deformation and disruption of the arrangement of chondrocytes, coagulation of chondrocytes, and duplication of the tidemark in the cartilage. We also found an increase in multinuclear osteoclasts in the cancellous bone. We found a reduction in BV, BMC, and BMD in the extraction and powder groups compared to the control group, as well as a reduction of bone volume, a lowering of osteogenesis parameters, and an increase in bone resorption parameters in the secondary cancellous bone. These results suggest that a lack of teeth and a soft food diet during the growth period cause a decline in bone microstructure, a decrease in osteogenesis, and an increase in bone resorption.
Nanotechnology is a branch of science focusing on the manipulation of materials measured on the nanoscale (size = 1–100 nm). Recent advances in the field of nanodentistry have resulted in the development of alternative treatment plans for common dental problems, bringing about a paradigm shift in dentistry. Nanorobots, also known as “nanites” or “nanomachines,” are theoretical microscopic devices that may be used for the diagnosis and treatment of oral health problems. This paper aims to discuss the latest innovations in the field of nanodentistry.
There is plenty of literature on masticatory function and its impact on maxillofacial development. However, the influence of masticatory hypofunction on bone turnover in the alveolar bone has hardly been studied. This study aimed to clarify the influence of tooth loss and soft diet on the alveolar bone turnover during the growth period. Three-week-old Wistar rats were randomly divided into the following three groups: Hard diet group (rats raised on solid standard diet), Powder diet group (rats raised on powdered standard feed diet), and Extraction group (rats raised on powdered standard diet with maxillary molars extraction). BV, BMC, and BMD in the cancellous bone of M1 were measured using micro-CT analysis. To analyze the histological bone turnover, we prepared non-decalcified thin sections of alveolar cancellous bone when rats were 20 weeks old. On three-dimensional constructed images, the experimental groups (the Powder diet and Extraction groups) showed expansion of the medullary cavity of the interradicular septum of the first molar compared to controls (the Hard diet group). BV, BMC, and BMD were significantly lower in the experimental groups, with the difference from controls being greater in the Extraction group. On histomorphometric analysis, the bone mass parameters, bone formation parameters, and bone mineralization parameters were significantly lower in the experimental groups compared to controls. The bone resorption parameters were significantly higher in the experimental groups. From this study, we found that soft diet and tooth loss might worsen the bone microstructure, reduce osteogenesis, and promote bone resorption in alveolar bone.
Background: Alkaline phosphatase has 4 isozymes, tissue non-specific alkaline phosphatase (TNAP), placental alkaline phosphatase (PLAP), intestinal alkaline phosphatase and germ-cell alkaline phosphatase. Hypophosphatasia (HPP) is an inherited skeletal disease caused by mutations of the gene encoding TNAP. Although TNAP is expressed in various tissues, the primary HPP symptoms appear in bones and teeth. The clinical severity of HPP varies widely from the most severe (perinatal, infantile and childhood) to the mildest forms (adult, and odonto-hypophosphatasia). We reported that gene therapy using a single injection of lentiviral vector expressing bone-targeted TNAP (TNAP-D 10 ) is effective in preventing all the skeletal of HPP in TNAP knockout (Alpl −/− ) mice as the model of infantile HPP. Objective: In this study we focus on evaluating the efficacy of treatment with gene therapy on the bone and teeth using TNAP-D 10 and also we investigate the feasibility of gene therapy using bone-targeted PLAP (PLAP-D 10 ). Methods and Findings: We used
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.