The intention of fault detection is to detect the fault at the beginning stage and shut off the machine immediately to avoid motor failure due to the large fault current. In this work, an online fault diagnosis of stator interturn fault of a three-phase induction motor based on the concept of symmetrical components is presented. A mathematical model of an induction motor with turn fault is developed to interpret machine performance under fault. A Simulink model of a three-phase induction motor with stator interturn fault is created for extraction of sequence components of current and voltage. The negative sequence current can provide a decisive and rapid monitoring technique to detect stator interturn short circuit fault of the induction motor. The per unit change in negative sequence current with positive sequence current is the main fault indicator which is imported to neural network architecture. The output of the feedforward backpropagation neural network classifies the short circuit fault level of stator winding.
A cost-effective power supply design proposed for electrostatic precipitators (ESP) is presented in this work. The cost minimization is done in terms of eliminating the power transformer and reducing power consumed by the ESP unit. Usually, transformers are used to boost the voltage level in conventional systems on its input side, which is replaced by a combination of a high-frequency converter along with a voltage multiplier in a modular arrangement. By interconnecting these modules, the suitable voltage is built-up easily. An intermittent pulse energized supply is developed by the proposed system to reduce back corona and to save energy consumption. The modular arrangement also increases the lifetime of converter switches, by reducing the switching stresses developed across them during its high-frequency operation and by reducing the Total Harmonic Distortion (THD). The complete system is designed and analyzed using MATLAB SIMULINK. The obtained results are better than the existing methods used for generating intermittent energization, the THD is reduced to 35.78% and the voltage stresses also reduced to 1800 V. And a module is experimented and found that it is capable of producing 3 kV.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.