The prefrontal cortex (PFC) is postulated to exert 'top-down control' by modulating information processing throughout the brain to promote specific actions based on current goals. However, the pathways mediating top-down control remain poorly understood. In particular, knowledge about direct prefrontal connections that might facilitate top-down prefrontal control of information processing in the hippocampus remains sparse. Here we describe novel monosynaptic long-range GABAergic projections from PFC to hippocampus. These preferentially inhibit vasoactive intestinal polypeptide expressing interneurons, which are known to disinhibit hippocampal microcircuits. Indeed, stimulating prefrontal−hippocampal GABAergic projections increases hippocampal feedforward inhibition and reduces hippocampal activity in vivo. The net effect of these actions is to specifically enhance the signal-to-noise ratio for hippocampal representations of objects. Correspondingly, stimulation of PFC-to-hippocampus GABAergic projections promotes object exploration. Together, these results elucidate a novel top-down pathway in which long-range GABAergic projections target disinhibitory microcircuits, thereby enhancing signals and network dynamics underlying exploratory behavior.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.