The overall goal of this project is to develop effective methods for the prevention of deep tissue injury (DTI). DTI is a severe type of pressure ulcer that originates at deep bone-muscle interfaces as a result of the prolonged compression of tissue. It afflicts individuals with reduced mobility and sensation, particularly those with spinal cord injury. We previously proposed using a novel electrical stimulation paradigm called intermittent electrical stimulation (IES) for the prophylactic prevention of DTI. IES-induced contractions mimic the natural repositioning performed by intact individuals, who subconsciously reposition themselves as a result of discomfort due to prolonged sitting. In this study, we investigated the effectiveness of various IES paradigms in reducing pressure around the ischial tuberosities, increasing tissue oxygenation throughout the gluteus muscles, and reducing sitting discomfort in able-bodied volunteers. The results were compared to the effects of voluntary muscle contractions and conventional pressure relief maneuvers (wheelchair push-ups). IES significantly reduced pressure around the tuberosities, produced significant and long-lasting elevations in tissue oxygenation, and significantly reduced discomfort produced by prolonged sitting. IES performed as well or better than both voluntary contractions and chair push-ups. The results suggest that IES may be an effective means for the prevention of DTI.
Deep tissue injury (DTI) is a severe form of pressure ulcer that originates at the bone-muscle interface. It results from mechanical damage and ischemic injury due to unrelieved pressure. Currently, there are no established clinical methods to detect the formation of DTI. Moreover, despite the many recommended methods for preventing pressure ulcers, none so far has significantly reduced the incidence of DTI. The goal of this study was to assess the effectiveness of a new electrical stimulation-based intervention, termed intermittent electrical stimulation (IES), in ameliorating the factors leading to DTI in individuals with compromised mobility and sensation. Specifically, we sought to determine whether IES-induced contractions in the gluteal muscles can 1) reduce pressure in tissue surrounding bony prominences susceptible to the development of DTI and 2) increase oxygenation in deep tissue. Experiments were conducted in individuals with spinal cord injury, and two paradigms of IES were utilized to induce contractions in the gluteus maximus muscles of the seated participants. Changes in surface pressure around the ischial tuberosities were assessed using a pressure-sensing mattress, and changes in deep tissue oxygenation were indirectly assessed using T₂*-weighted magnetic resonance imaging (MRI) techniques. Both IES paradigms significantly reduced pressure around the bony prominences in the buttocks by an average of 10-26% (P < 0.05). Furthermore, both IES paradigms induced significant increases in T₂* signal intensity (SI), indicating significant increases in tissue oxygenation, which were sustained for the duration of each 10-min trial (P < 0.05). Maximal increases in SI ranged from 2-3.3% (arbitrary units). Direct measurements of oxygenation in adult rats revealed that IES produces up to a 100% increase in tissue oxygenation. The results suggest that IES directly targets factors contributing to the development of DTI in people with reduced mobility and sensation and may therefore be an effective method for the prevention of deep pressure ulcers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.