Bifunctional DNA oligonucleotides serve as templates for chromophoric silver clusters and as recognition sites for target DNA strands, and communication between these two components is the basis of an oligonucleotide sensor. Few-atom silver clusters exhibit distinct electronic spectra spanning the visible and near-infrared region, and they are selectively synthesized by varying the base sequence of the DNA template. In these studies, a 16-base cluster template is adjoined with a 12-base sequence complementary to the target analyte, and hybridization induces structural changes in the composite sensor that direct the conversion between two spectrally and stoichiometrically distinct clusters. Without its complement, the sensor strand selectively harbors ~7 silver atoms that absorb at 400 nm and that fold the DNA host. Upon association of the target with its recognition site, the sensor strand opens to expose the cluster template that has the binding site for ~11 silver atoms, and absorption at 720 nm with relatively strong emission develops in lieu of the violet absorption. Variations in the length and composition of the recognition site and the cluster template indicate that these types of dual component sensors provide a general platform for near infrared-based detection of oligonucleotides in challenging biological environments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.