Bone marrow stromal cells (MSCs) are a heterogeneous subpopulation of bone marrow cells that includes mesenchymal stem and progenitor cells. Extensive research conducted during the last decade has shown great promise for MSCs as an effective therapy for traumatic brain injury (TBI) in experimental models 32-35, 37-41,52 and potentially in clinical settings. Also the underlying mechanisms of action of MSCs have been demonstrated to be neuro-restorative rather than neuro-substitutive. 33 Among their neural remodeling effects, MSCs have been shown to promote axonal sprouting in the brain and spinal cord. 42,60 The present study focuses on the ability of MSCs to inhibit neurocan, one of the growth-inhibitory molecules (growth-IMs) that suppress axonal regeneration after neural injury. 18,25 The molecular mechanisms involved in axonal regeneration after neural injury are still unclear; however, over the last few years growth-IMs that have a repulsive effect Suppression of neurocan and enhancement of axonal density in rats after treatment of traumatic brain injury with scaffolds impregnated with bone marrow stromal cells Object. Neurocan is a major form of growth-inhibitory molecule (growth-IM) that suppresses axonal regeneration after neural injury. Bone marrow stromal cells (MSCs) have been shown to inhibit neurocan expression in vitro and in animal models of cerebral ischemia. Therefore, the present study was designed to investigate the effects of treatment of MSCs impregnated with collagen scaffolds on neurocan expression after traumatic brain injury (TBI).Methods. Adult male Wistar rats were injured with controlled cortical impact and treated with saline, human MSCs (hMSCs) (3 × 10 6 ) alone, or hMSCs (3 × 10 6 ) impregnated into collagen scaffolds (scaffold + hMSCs) transplanted into the lesion cavity 7 days after TBI (20 rats per group). Rats were sacrificed 14 days after TBI, and brain tissues were harvested for immunohistochemical studies, Western blot analyses, laser capture microdissections, and quantitative real-time reverse transcriptase polymerase chain reaction (qRT-PCR) to evaluate neurocan protein and gene expressions after various treatments.Results. Animals treated with scaffold + hMSCs after TBI showed increased axonal and synaptic densities compared with the other groups. Scaffold + hMSC treatment was associated with reduced TBI-induced neurocan protein expression and upregulated growth-associated protein 43 (GAP-43) and synaptophysin expression in the lesion boundary zone. In addition, animals in the scaffold + hMSC group had decreased neurocan transcription in reactive astrocytes after TBI. Reduction of neurocan expression was significantly greater in the scaffold + hMSC group than in the group treated with hMSCs alone.Conclusions. The results of this study show that transplanting hMSCs with scaffolds enhances the effect of hMSCs on axonal plasticity in TBI rats. This enhanced axonal plasticity may partially be attributed to the downregulation of neurocan expression by hMSC treatment after in...
Background: Lateral antebrachial cutaneous nerve is a terminal sensory branch of the musculocutaneous nerve. Lateral antebrachial cutaneous neuropathy (LABCN) is rare and often underdiagnosed. Less than 100 cases have been described in the orthopedic literature. Methods: It’s a single-center retrospective study. A retrospective chart review of patients with LABCN who were seen over 16 years was performed. Demographics and detailed clinical information were recorded. In addition, electrodiagnostic data were reviewed, and clinical outcome was recorded. Results: Fifteen patients were included in this study. Postsurgical etiology was the most common (n = 7) cause of LABCN. Other cases included antecubital fossa phlebotomy and intravenous placement (n = 4), trauma (n = 1), overuse or repetitive forearm use (n = 2), and dog bite (n = 1). No etiology was found in one case, but the patient had diabetes. Conclusion: Our study proposes that patient positioning during orthopedic surgeries leading to stretch or compression of the lateral antebrachial cutaneous nerve is the most likely cause of LABCN. Antecubital fossa needle placement is the second most common cause of LABCN. However, it’s a rare mononeuropathy and can be underdiagnosed. Therefore, detailed history, examination, and nerve conduction studies of the bilateral lateral antebrachial cutaneous nerve could help establish the diagnosis after other etiologies have been carefully excluded.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.