Graphene is an excellent filler for the development of reinforced composites. This study evaluated bone cement composites of graphene oxide (GO) and poly(methyl methacrylate) (PMMA) based on the proliferation of human bone marrow mesenchymal stem cells (hBMSCs), and the anabolic and catabolic effects of the incorporation of GO on osteoblast cells at a genetic level. Surface wettability and roughness were also evaluated at different GO concentrations (GO1: 0.024 wt% and GO2: 0.048 wt%) in the polymer matrix. Fabricated specimens were tested to (a) observe cell proliferation and (b) identify the effectiveness of GO on the expression of bone morphogenic proteins. Early osteogenesis was observed based on the activity of alkaline phosphatase and the genetic expression of the run-related transcription factor 2. Moreover, bone strengthening was determined by examining the collagen type 1 alpha–1 gene. The surface roughness of the substrate material increased following the addition of GO fillers to the resin matrix. It was found that over a period of ten days, the proliferation of hBMSCs on GO2 was significantly higher compared to the control and GO1. Additionally, quantitative colorimetric mineralization of the extracellular matrix revealed greater calcium phosphate deposition by osteoblasts in GO2. Furthermore, alizarin red staining analysis at day 14 identified the presence of mineralization in the form of dark pigmentation in the central region of GO2. The modified GO–PMMA composite seems to be promising as a bone cement type for the enhancement of the biological activity of bone tissue.
Amidst growing technological advancements, newer denture base materials and polymerization methods have been introduced. During fabrication, certain mechanical properties are vital for the clinical longevity of the denture base. This systematic review aimed to explore the effect of newer denture base materials and/or polymerization methods on the mechanical properties of the denture base. An electronic database search of English peer-reviewed published papers was conducted using related keywords from 1 January 2011, up until 31 December 2021. This systematic review was based on guidelines proposed by the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). The search identified 579 papers. However, the inclusion criteria recognized 22 papers for eligibility. The risk of bias was moderate in all studies except in two where it was observed as low. Heat cure polymethyl methacrylate (PMMA) and compression moulding using a water bath is still a widely used base material and polymerization technique, respectively. However, chemically modified PMMA using monomers, oligomers, copolymers and cross-linking agents may have a promising result. Although chemically modified PMMA resin might enhance the mechanical properties of denture base material, no clear inferences can be drawn about the superiority of any polymerization method other than the conventional compression moulding technique.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.