perovskite solar cells (pScs) composed of organic polymer-based hole-transporting materials (HtMs) are considered to be an important strategy in improving the device performance, to compete with conventional solar cells. Yet the use of such expensive and unstable HTMs, together with hygroscopic perovskite structure remains a concern -an arguable aspect for the prospect of onsite photovoltaic (PV) application. Herein, we have demonstrated the sustainable fabrication of efficient and air-stable PSCs composed of an invasive plant (Eichhornia crassipes) extracted porous graphitic carbon (ec-Gc) which plays a dual role as HTM/counter electrode. The changes in annealing temperature (~450 °C, ~850 °C and ~1000 °C) while extracting the EC-GC, made a significant impact on the degree of graphitization -a remarkable criterion in determining the device performance. Hence, the fabricated champion device-1 c : Glass/fto/c-tio 2 /mp-tio 2 /cH 3 nH 3 pbi 3−x cl x /EC-GC10@CH 3 nH 3 pbi 3−x cl x /EC-GC10) exhibited a PCE of 8.52%. Surprisingly, the introduced EC-GC10 encapsulated perovskite interfacial layer at the perovskite/HtM interface helps in overcoming the moisture degradation of the hygroscopic perovskite layer in which the same champion device-1 c evinced better air stability retaining its efficiency ~94.40% for 1000 hours. We believe that this present work on invasive plant extracted carbon playing a dual role, together as an interfacial layer may pave the way towards a reliable perovskite photovoltaic device at low-cost.Lower cost, shorter payback time and an unprecedented rise in power conversion efficiency (PCE) escalating from 3.8% in 2009 to 24.2% (2019) have turned the attention of researchers and industrial community towards perovskite solar cells (PSCs) within a decade 1-5 . Outstanding photovoltaic properties such as high charge carrier mobility, long electron-hole diffusion length, high absorption coefficient with tuneable bandgap property, low-exciton binding energy, and easy solution preparation techniques make it to compete with traditional commercial silicon solar cells 6,7 . In general, a typical PSC is composed of an electron transport layer (ETL), an active absorbing layer, a HTL, and a counter electrode. Nevertheless, the use of expensive and unstable conducting polymers based hole transporting materials (HTMs) such as (2,2′,7,7′-tetrakis(N,N-di-p-methoxyphenylamine)-9
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.