Purpose The purpose of this study is to design a flight control model for a control surface-less (CSL) tri-tilt-rotor (TTR) unmanned aerial vehicle (UAV) based on a Proportional Integral Derivative (PID) controller to stabilize the altitude and attitude of the UAV subjected to various flying conditions. Design/methodology/approach First, the proposed UAV with a tilting mechanism is designed and analyzed to obtain the aerodynamic parameters. Second, the dynamics of the proposed UAV are mathematically modeled using Newton-Euler formation. Then, the PID controller is implemented in the simulation model to control flight maneuvers. The model parameters were implemented in a mathematical model to find the system’s stability for various flight conditions. The model was linearized to determine the PID gain values for vertical take-off and landing, cruise and transition mode. The PID controller was tuned to obtain the desired altitude and attitude in a short period. The tuned PID gain values were implemented in the PID controller and the model was simulated. Findings The main contribution of this study is the mathematical model and controller for a UAV without any control surface and uses only a thrust vector control mechanism which reduces the complexity of the controller. The simulation has been carried out for various flight conditions. The altitude PID controller and the attitude PID controller for CSL-TTR-UAV were tuned to obtain desired altitude and attitude within the optimum duration of 4 s and deviation in the attitude of 8%, which is within the allowable limit of 14%. The findings obtained from the simulation revels that the altitude and attitude control of the CSL-TTR-UAV was achieved by controlling the rpm of the rotor and tilt angle using the PID controller. Originality/value A novel CSL TTR UAV mathematical model is developed with a dual tilting mechanism for a tail rotor and single axis tilt for the rotors in the wing. The flight control model controls the UAV without a control surface using a PID controller for the thrust vector mechanism.
Metallized cold-spray coatings were employed to make B4C/AA7075 and aluminum + plasma electrolytic oxidation (PEO) duplex coatings on AZ64. In addition, the phase structure, mechanical characteristics, wear, and PEO ceramic coatings examine the corrosion resistance. According to the findings, the PEO ceramic coating comprises α-aluminum oxide and γ-aluminum oxide, with some remnants of B4C still being preserved. PEO ceramic coatings outperformed their corresponding CS counterparts regarding mechanical characteristics and wear resistance. For example, the PEO-B4C coating achieved a hardness of 13.8 GPa and an elastic modulus of 185.5 GPa, which were 21.0% and 23.5%, respectively, more significant than the comparable values for the coating with CS. The PEO-B4C coating was 58% and 15.7% less abrasive than the equivalent CS coating due to its lower wear rate of 4.84 × 10−5 mm3/Nm and relatively lower of 0.64. The density of corrosion current in the PEO-treated B4C-AA7075 coating (3.735 × 106 A/cm2) is similar to the corrosion current density in the untreated CS coatings. Finally, compared to untreated CS B4C-AA7075, the coating’s mechanical characteristics and wear resistance are considerably enhanced by the PEO treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.