Purpose
The purpose of this study is to design a flight control model for a control surface-less (CSL) tri-tilt-rotor (TTR) unmanned aerial vehicle (UAV) based on a Proportional Integral Derivative (PID) controller to stabilize the altitude and attitude of the UAV subjected to various flying conditions.
Design/methodology/approach
First, the proposed UAV with a tilting mechanism is designed and analyzed to obtain the aerodynamic parameters. Second, the dynamics of the proposed UAV are mathematically modeled using Newton-Euler formation. Then, the PID controller is implemented in the simulation model to control flight maneuvers. The model parameters were implemented in a mathematical model to find the system’s stability for various flight conditions. The model was linearized to determine the PID gain values for vertical take-off and landing, cruise and transition mode. The PID controller was tuned to obtain the desired altitude and attitude in a short period. The tuned PID gain values were implemented in the PID controller and the model was simulated.
Findings
The main contribution of this study is the mathematical model and controller for a UAV without any control surface and uses only a thrust vector control mechanism which reduces the complexity of the controller. The simulation has been carried out for various flight conditions. The altitude PID controller and the attitude PID controller for CSL-TTR-UAV were tuned to obtain desired altitude and attitude within the optimum duration of 4 s and deviation in the attitude of 8%, which is within the allowable limit of 14%. The findings obtained from the simulation revels that the altitude and attitude control of the CSL-TTR-UAV was achieved by controlling the rpm of the rotor and tilt angle using the PID controller.
Originality/value
A novel CSL TTR UAV mathematical model is developed with a dual tilting mechanism for a tail rotor and single axis tilt for the rotors in the wing. The flight control model controls the UAV without a control surface using a PID controller for the thrust vector mechanism.
The present work deals with helicopter theory involving the study, design and fabrication of the helicopter rotor blades with the length-morphing mechanism. The research of the rotor blades has enabled in a proper understanding of the aerodynamics and design of the same. The thrust produced by a blade is proportional to its area, and for every motor RPM, maximum thrust efficiency is achieved for a discrete length of the rotor blade. Facing this complexity, designers compute an optimal length for the average motor RPM while designing the heli-copter blades. Acknowledging the challenges, Length-Morphing rotor blades targeting maximum thrust efficiency for each motor RPM was developed with the aid of knowledge in Blade Element Theory. The rotor blade was designed and fabricated to be driven by the centrifugal force from the motor. The rotor blade was divided into fixed inboard section and sliding outboard part in a span-wise direction. The analy-sis was carried out to study and comprehend the operating conditions of the length-variable rotor during revolutions and to derive the design variables of extension-spring and rotor weight. Variation of thrust concerning the length of the rotor blade was studied, and the setup was fabricated. The project aims to enable maximum rotor blade thrust efficiency for each RPM of the motor by varying the length of the rotor blade and computing the performance characteristics of the same.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.