Hepatotoxicity is one of the major complications of methotrexate (MTX) therapy. This study was carried out to evaluate the possible protective effect of resveratrol (trans-3,5,4'-trihydroxystilbene, RVT) against MTX-induced hepatotoxicity. Rats were randomly divided into four groups as control, MTX treated (7 mg/kg/day, intraperitoneally (i.p.), once daily for 3 consecutive days), MTX + RVT treated (20 mg/kg/day, i.p.), and RVT treated. First dose of RVT was administrated 3 days before the MTX injection and continued for 3 days. Histopathology of liver was evaluated by light microscopy. Aspartate aminotransferase (AST), alanine aminotransferase (ALT), and alkaline phosphatase (ALP) were used as biochemical markers of MTX-induced hepatic injury. The levels of thiobarbituric acid reactive substances (TBARS, a marker of lipid peroxidation) and activities of hepatic antioxidant enzymes such as catalase (CAT) and glutathione-S-transferase (GST) were used to analyze the oxidative stress-mediated lipid peroxidation in liver sections. Our results showed that MTX administration significantly increased ALT, ASP, and ALP levels. TBARS, CAT, and GST levels were also markedly increased in liver after MTX administration. RVT treatment significantly prevented MTX-induced hepatotoxicity, as indicated by AST, ALT, and ALP levels and liver histopathology. Moreover, administration of RVT significantly decreased the elevated levels of TBARS and activities of CAT and GST in the liver compared to MTX-treated group. These results revealed that RVT may have a protective effect against MTX-induced hepatotoxicity by inhibiting oxidative stress-mediated lipid peroxidation. Consequently, RVT treatment might be a promising strategy against MTX-induced hepatotoxicity.
The aim of this study was to investigate whether the low-molecular-weight heparins (LMWHs) (eg, nadroparin, enoxaparin, and dalteparin) cause a vasodilatory effect in human internal mammary artery (IMA) and to further compare its effect with unfractioned heparin (UFH). Samples of redundant IMA obtained from 20 patients undergoing a coronary artery bypass graft surgery were cut into 3-mm-wide rings and suspended in 20-mL organ baths. Isometric tension was continuously measured with an isometric force transducer connected to a computer-based data acquisition system. LMWHs (0.5-6 U/mL) caused a concentration-dependent relaxation in the endothelium-intact human IMA rings, which were precontracted with Phe (10(-6) M) (P < 0.05). The vasodilator potency of LMWHs seems to be nearly similar while the maximal effect produced by LMWHs was less pronounced compared with that produced by UFH. Removal of endothelium totally abolished the responses of human IMA to LMWHs as well as UFH (P < 0.05). LMWHs-induced vasodilator effect was significantly attenuated by Nomega-nitro-L-arginine methyl ester (L-NAME, 10(-4) M) but not indomethacin (10(-5) M). Our results have shown that LMWHs cause a dose-dependent relaxation in human IMA but are less effective than that produced by UFH. The vasorelaxant effects induced by each of LMWH are nearly similar and seem to be via endothelium-dependent mechanisms, including generation of nitric oxide.
Nephrotoxicity is one of the serious dose-limiting complications of methotrexate (MTX) when used in the treatment of various malignancies and nononcological diseases. The aim of this study was to investigate the role of poly(adenosine diphosphate ribose) polymerase (PARP) activity in MTX-induced nephrotoxicity. Rats were divided into 4 groups as control, MTX treated (MTX, 7 mg/kg per d, intraperitoneally [ip], once daily for 3 consecutive days), MTX plus 1,5-isoquinelinediol (ISO, a PARP inhibitor, 3 mg/kg per d, i.p.) treated, or ISO treated. Histopathology of kidneys was evaluated by light microscopy. Terminal deoxynucleotidyl transferase deoxyuridine triphosphate nick end labeling assay was used to analyze apoptosis in kidney sections. Blood urea nitrogen (BUN), serum creatinine, and urinary N-acetyl-β-d-glucosaminidase (NAG) were used as biochemical markers of MTX-induced renal injury. Our results showed that MTX administration significantly increased BUN, serum creatinine, and urinary NAG levels. The PARP-1 and PAR (a product of PARP activity) expression and apoptotic cell death were also markedly increased in renal tubules after MTX administration. The ISO treatment attenuated MTX-induced renal injury, as indicated by BUN and serum creatinine levels, urinary NAG excretion, and renal histology. The PARP inhibitor treatment reduced PARP-1 and PAR expression to levels similar to that of controls. These results revealed that ISO may have a protective effect against the nephrotoxic effects of MTX by inhibiting PARP activation. This is the first study that demonstrates the role of PARP activation in MTX-induced nephrotoxicity and tubular apoptosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.