Multi-omic insights into microbiome function and composition typically advance one study at a time. However, to understand relationships across studies, they must be aggregated into meta-analyses. This makes it possible to generate new hypotheses by finding features that are reproducible across biospecimens and data layers. Qiita dramatically accelerates such integration tasks in a web-based microbiome comparison platform, which we demonstrate with Human Microbiome Project and iHMP data.
Changing ocean conditions driven by anthropogenic activities may have a negative impact on fisheries by increasing stress and disease. To understand how environment and host biology drives mucosal microbiomes in a marine fish, we surveyed five body sites (gill, skin, digesta, gastrointestinal tract [GI], and pyloric ceca) from 229 Pacific chub mackerel, Scomber japonicus, collected across 38 time points spanning 1 year from the Scripps Institution of Oceanography Pier (La Jolla, CA). Mucosal sites had unique microbial communities significantly different from the surrounding seawater and sediment communities with over 10 times more total diversity than seawater. The external surfaces of skin and gill were more similar to seawater, while digesta was more similar to sediment. Alpha and beta diversity of the skin and gill was explained by environmental and biological factors, specifically, sea surface temperature, chlorophyll a, and fish age, consistent with an exposure gradient relationship. We verified that seasonal microbial changes were not confounded by regional migration of chub mackerel subpopulations by nanopore sequencing a 14,769-bp region of the 16,568-bp mitochondria across all temporal fish specimens. A cosmopolitan pathogen, Photobacterium damselae, was prevalent across multiple body sites all year but highest in the skin, GI, and digesta between June and September, when the ocean is warmest. The longitudinal fish microbiome study evaluates the extent to which the environment and host biology drives mucosal microbial ecology and establishes a baseline for long-term surveys linking environment stressors to mucosal health of wild marine fish. IMPORTANCE Pacific chub mackerel, Scomber japonicus, are one of the largest and most economically important fisheries in the world. The fish is harvested for both human consumption and fish meal. Changing ocean conditions driven by anthropogenic stressors like climate change may negatively impact fisheries. One mechanism for this is through disease. As waters warm and chemistry changes, the microbial communities associated with fish may change. In this study, we performed a holistic analysis of all mucosal sites on the fish over a 1-year time series to explore seasonal variation and to understand the environmental drivers of the microbiome. Understanding seasonality in the fish microbiome is also applicable to aquaculture production for producers to better understand and predict when disease outbreaks may occur based on changing environmental conditions in the ocean.
Changing ocean conditions driven by anthropogenic activity may have a negative impact on fisheries by increasing stress and disease with the mucosal microbiome as a potentially important intermediate role. To understand how environment and host biology drives mucosal microbiomes in a marine fish, we surveyed five body sites (gill, skin, digesta, GI, and pyloric caeca) from 229 Pacific chub mackerel, Scomber japonicus, collected across 38 time points spanning one year from the Scripps Institution of Oceanography Pier, making this the largest and longest wild marine fish microbiome survey. Mucosal sites had unique communities significantly different from the surrounding sea water and sediment communities with over 10 times more diversity than sea water alone. Although, external surfaces such as skin and gill were more similar to sea water, digesta was similar to sediment. Both alpha and beta diversity of the skin and gill was explained by environmental and biological factors, especially sea surface temperature, chlorophyll a, and fish age, consistent with an exposure gradient relationship. We verified that seasonal microbial changes were not confounded by migrations of chub mackerel sub-populations by nanopore sequencing a 14 769 bp region of the 16 568 bp mitochondria. A cosmopolitan pathogen, Photobacterium damselae, was prevalent across multiple body sites all year, but highest in the skin, GI, and digesta between June and September. Our study evaluates the extent which the environment and host biology drives mucosal microbial ecology, establishing a baseline for long term monitoring surveys for linking environment stressors to mucosal health of wild marine fish.
Histoplasma species are dimorphic fungi causing significant morbidity and mortality worldwide. These fungi grow as mold in the soil and as budding yeast within the human host. Histoplasma can be isolated from soil in diverse regions, including North America, South America, Africa, and Europe.
There is hope that genomic information will assist prediction, treatment, and understanding of Alzheimer’s disease (AD). Here, using exome data from ∼10,000 individuals, we explore machine learning neural network (NN) methods to estimate the impact of SNPs (i.e., genetic variants) on AD risk. We develop an NN-based method (netSNP) that identifies hundreds of novel potentially protective or at-risk AD-associated SNPs (along with an effect measure); the majority with frequency under 0.01. For case individuals, the number of “protective” (or “at-risk”) netSNP-identified SNPs in their genome correlates positively (or inversely) with their age of AD diagnosis and inversely (or positively) with autopsy neuropathology. The effect measure increases correlations. Simulations suggest our results are not due to genetic linkage, overfitting, or bias introduced by netSNP. These findings suggest that netSNP can identify SNPs associated with AD pathophysiology that may assist with the diagnosis and mechanistic understanding of the disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.