Transcranial direct current stimulation (tDCS) modulates human behavior, neuronal patterns, and metabolite concentrations, with exciting potential for neurorehabilitation. However, the understanding of tDCS-induced alterations on the neuronal level is incomplete, and conclusions from young adults, in whom the majority of studies have been conducted, cannot be easily transferred to older populations. Here, we investigated tDCS-induced effects in older adults ( = 48; age range, 50-79 years) using magnetic resonance spectroscopy to quantify GABA levels as well as resting-state functional magnetic resonance imaging to assess sensorimotor network strength and interhemispheric connectivity. In a randomized, counterbalanced, crossover design, we applied anodal tDCS (atDCS), cathodal tDCS (ctDCS), and sham tDCS (stDCS) over the left sensorimotor region. We observed a significant reduction of GABA levels after atDCS compared with stDCS, reflecting the preserved neuromodulatory effect of atDCS in older adults. Moreover, resting-state functional coupling was decreased during atDCS compared with stDCS, most likely indicating augmented efficiency in brain network functioning. Increased levels of interhemispheric connectivity with age were diminished by atDCS, suggesting stimulation-induced functional decoupling. Further, the magnitude of atDCS-induced local plasticity was related to baseline functional network strength. Our findings provide novel insight into the neuronal correlates underlying tDCS-induced neuronal plasticity in older adults and thus might help to develop tDCS interventions tailored to the aging brain. Transcranial direct current stimulation (tDCS) modulates human behavior, neuronal patterns, and metabolite concentrations, with exciting potential for neurorehabilitation. However, the understanding of tDCS-induced alterations on the neuronal level is incomplete, and conclusions from young adults cannot be easily transferred to older populations. We used a systematic multimodal imaging approach to investigate the neurophysiological effects of tDCS in older adults and found stimulation-induced effects on GABA levels, reflecting augmented local plasticity and functional connectivity, suggesting modulation of network efficiency. Our findings may help to reconcile some of the recent reports on the variability of tDCS-induced effects, not only implicating age as a crucial modulating factor, but detailing its specific impact on the functionality of neural networks.
Background: Recent research on neural and behavioral consequences of transcranial direct current stimulation (tDCS) has highlighted the impact of individual factors, such as brain anatomy which determines current field distribution and may thus significantly impact stimulation effects. Computational modeling approaches may significantly advance our understanding of such factors, but the association of simulation-based tDCS-induced fields and neurophysiological outcomes has not been investigated. Objectives: To provide empirical evidence for the relationship between tDCS-induced neurophysiological outcomes and individually induced electric fields. Methods: We applied tDCS during eyes-closed resting-state functional resonance imaging (rsfMRI) and assessed pre-post magnetic resonance spectroscopy (MRS) in 24 participants. We aimed to quantify effects of 15-min tDCS using the "classical" left SM1-right supraorbital area montage on sensorimotor network (SMN) strength and gamma-aminobutyric acid (GABA) and glutamate concentrations, implementing a cross-over counterbalanced design with three stimulation conditions. Additional structural anatomical MRI sequences and recordings of individual electrode configurations allowed individual electric field simulations based on realistic head models of all participants for both conditions. Results: On a neurophysiological level, we observed the expected reduction of GABA concentrations and increase in SMN strength, both during anodal and cathodal compared to sham tDCS, replicating previous results. The magnitudes of neurophysiological modulations induced by tDCS were significantly associated with simulation-based electric field strengths within the targeted left precentral gyrus. Conclusion: Our findings corroborate previous reports on tDCS-induced neurophysiological modulations and further advance the understanding of underlying mechanisms by providing first empirical evidence for the association of the injected electric field and neuromodulatory effects.
Novelty-seeking tendencies in adolescents may promote innovation as well as problematic impulsive behaviour, including drug abuse. Previous research has not clarified whether neural hyper- or hypo-responsiveness to anticipated rewards promotes vulnerability in these individuals. Here we use a longitudinal design to track 144 novelty-seeking adolescents at age 14 and 16 to determine whether neural activity in response to anticipated rewards predicts problematic drug use. We find that diminished BOLD activity in mesolimbic (ventral striatal and midbrain) and prefrontal cortical (dorsolateral prefrontal cortex) regions during reward anticipation at age 14 predicts problematic drug use at age 16. Lower psychometric conscientiousness and steeper discounting of future rewards at age 14 also predicts problematic drug use at age 16, but the neural responses independently predict more variance than psychometric measures. Together, these findings suggest that diminished neural responses to anticipated rewards in novelty-seeking adolescents may increase vulnerability to future problematic drug use.
The two-fold benefit of H magnetic resonance spectroscopy (MRS) at high B fields - enhanced sensitivity and increased spectral dispersion - has been used previously to study dynamic changes in metabolite concentrations in the human brain in response to visual stimulation. In these studies, a strong visual on/off stimulus was combined with MRS data acquisition in a voxel location in the occipital cortex determined by an initial functional magnetic resonance imaging experiment. However, 1) to exclude the possibility of systemic effects (heartbeat, blood flow, etc.), which tend to be different for on/off conditions, a modified stimulation condition not affecting the target voxel needs to be employed, and 2) to assess important neurotransmitters of low concentration, in particular γ-aminobutyric acid (GABA), it may be advantageous to analyze steady-state, rather than dynamic, conditions. Thus, the aim of this study was to use short-TE H MRS methodology at 7 T to detect differences in steady-state metabolite levels in response to a varying stimulation paradigm in the human visual cortex. The two different stimulation conditions were termed voxel and control activation. Localized MR spectra were acquired using the SPECIAL (spin-echo full-intensity acquired localized) sequence. Data were analyzed using LCModel. Fifteen individual metabolites were reliably quantified. On comparison of steady-state concentrations for voxel versus control activation, a decrease in GABA of 0.05 mmol/L (5%) and an increase in lactate of 0.04 mmol/L (7%) were found to be the only significant effects. The observed reduction in GABA can be interpreted as reduced neuronal inhibition during voxel activation, whereas the increase in lactate hints at an intensification of anaerobic glycolysis. Differences from previous studies, notably the absence of any changes in glutamate, are attributed to the modified experimental conditions. This study demonstrates that the use of advanced H MRS methodology at 7 T allows the detection of subtle changes in metabolite concentrations involved in neuronal activation and inhibition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.