Abstract.A public dataset, with a variety of properties suitable for sentiment analysis [1], event prediction, trend detection and other text mining applications, is needed in order to be able to successfully perform analysis studies. The vast majority of data on social media is text-based and it is not possible to directly apply machine learning processes into these raw data, since several different processes are required to prepare the data before the implementation of the algorithms. For example, different misspellings of same word enlarge the word vector space unnecessarily, thereby it leads to reduce the success of the algorithm and increase the computational power requirement. This paper presents an improved Turkish dataset with an effective spelling correction algorithm based on Hadoop [2]. The collected data is recorded on the Hadoop Distributed File System and the text based data is processed by MapReduce programming model. This method is suitable for the storage and processing of large sized text based social media data. In this study, movie reviews have been automatically recorded with Apache ManifoldCF (MCF) [3] and data clusters have been created. Various methods compared such as Levenshtein and Fuzzy String Matching have been proposed to create a public dataset from collected data. Experimental results show that the proposed algorithm, which can be used as an open source dataset in sentiment analysis studies, have been performed successfully to the detection and correction of spelling errors.
In recent years, with the rise of artificial intelligence and deep learning, facial recognition technologies have been developed that operate with high accuracy even in adverse conditions. However, extracting demographic information such as gender, age and race from facial features has been a hot research area. In this study, a new Average Neural Face Embeddings (ANFE) method that uses facial vectors of people for gender recognition is presented. Instead of training deep neural network from scratch, a simple, fast and effective solution has been developed that performs a distance calculation between the average gender vectors and the person's face vector. The method proposed as a result of the study carried out provided a high and successful recognition performance with with 96.47% of the males and 99.92% of the females.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.