Engineering optimization problems usually contain various constraints and mixed integer-discrete-continuous types of design variables. We propose an efficient particle swarm optimization (PSO) algorithm for such problems. First, we transform the constrained optimization problem into an unconstrained problem without introducing problem-dependent or user-defined parameters such as penalty factors or Lagrange multipliers (such parameters are usually required in general optimization algorithms). Then, we extend the above PSO method to handle integer, discrete, and continuous design variables in a simple manner with a high degree of precision. The proposed PSO scheme is fairly simple and therefore easy to implement. To demonstrate the effectiveness of our method, several mechanical design optimization problems are solved, and the numerical results are compared with results reported in the literature.
This paper studies the metaheuristic optimizer-based direct identification of a multiple-mode system consisting of a finite set of linear regression representations of subsystems. To this end, the concept of a multiple-mode linear regression model is first introduced, and its identification issues are established. A method for reducing the identification problem for multiple-mode models to an optimization problem is also described in detail. Then, to overcome the difficulties that arise because the formulated optimization problem is inherently ill-conditioned and nonconvex, the cyclic-network-topology-based constrained particle swarm optimizer (CNT-CPSO) is introduced, and a concrete procedure for the CNT-CPSO-based identification methodology is developed. This scheme requires no prior knowledge of the mode transitions between subsystems and, unlike some conventional methods, can handle a large amount of data without difficulty during the identification process. This is one of the distinguishing features of the proposed method. The paper also considers an extension of the CNT-CPSO-based identification scheme that makes it possible to simultaneously obtain both the optimal parameters of the multiple submodels and a certain decision parameter involved in the mode transition criteria. Finally, an experimental setup using a DC motor system is established to demonstrate the practical usability of the proposed metaheuristic optimizer-based identification scheme for developing a multiple-mode linear regression model.
In this study, a novel easy-to-use meta-heuristic method for simultaneous identification of model structure and the associated parameters for linear systems is developed. This is achieved via a constrained multidimensional particle swarm optimization (PSO) mechanism developed by hybridizing two main methodologies: one for negating the limit for fixing the particle’s dimensions within the PSO process and another for enhancing the exploration ability of the particles by adopting a cyclic neighborhood topology of the swarm. This optimizer consecutively searches the dimensional optimum of particles and then the positional optimum in the search space, whose dimension is specified by the explored optimal dimension. The dimensional optimum provides the optimal model structure, while the positional optimum provides the optimal model parameters. Typical numerical examples are considered for evaluation purposes, which clearly demonstrate that the proposed PSO scheme provides novel and powerful impetus with remarkable reliability toward simultaneous identification of model structure and unknown model parameters. Furthermore, identification experiments are conducted on a magnetic levitation system and a robotic manipulator with joint flexibility to demonstrate the effectiveness of the proposed strategy in practical applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.