Progression of non-small-cell lung cancer (NSCLC) to metastasis is poorly understood. Two genetic approaches were used to evaluate the role of adherens junctions in a C-RAF driven mouse model for NSCLC: conditional ablation of the cdh1 gene and expression of dominant-negative (dn) E-cadherin. Disruption of E-cadherin caused massive formation of intratumoral vessels that was reversible in the early phase of induction. Vascularized tumors grew more rapidly, developed invasive fronts, and gave rise to micrometastasis. beta-catenin was identified as a critical effector of E-cadherin disruption leading to upregulation of VEGF-A and VEGF-C. In vivo, lung tumor cells with disrupted E-cadherin expressed beta-catenin target genes normally found in other endodermal lineages suggesting that reprogramming may be involved in metastatic progression.
Although progenitor cells of the conducting airway have been spatially localized and some insights have been gained regarding their molecular phenotype, relatively little is known about the mechanisms regulating their maintenance, activation, and differentiation. This study investigates the potential roles of E-cadherin in mouse Clara cells, as these cells were shown to represent the progenitor/stem cells of the conducting airways and have been implicated as the cell of origin of human non-small cell lung cancer. Postnatal inactivation of E-cadherin affected Clara cell differentiation and compromised airway regeneration under injury conditions. In steady-state adult lung, overexpression of the dominant negative E-cadherin led to an expansion of the bronchiolar stem cells and decreased differentiation concomitant with canonical Wnt signaling activation. Expansion of the bronchiolar stem cell pool was associated with an incessant proliferation of neuroepithelial body.associated Clara cells that ultimately gave rise to bronchiolar hyperplasia. Despite progressive hyperplasia, only a minority of the mice developed pulmonary solid tumors, suggesting that the loss of E-cadherin function leads to tumor formation when additional mutations are sustained. The present study reveals that E-cadherin plays a critical role in the regulation of proliferation and homeostasis of the epithelial cells lining the conducting airways.
Here we describe a novel conditional mouse lung tumor model for investigation of the pathogenesis of human lung cancer. On the basis of the frequent involvement of the Ras-RAF-MEK-ERK signaling pathway in human non-small cell lung carcinoma (NSCLC), we have explored the target cell availability, reversibility, and cell type specificity of transformation by oncogenic C-RAF. Targeting expression to alveolar type II cells or to Clara cells, the two likely precursors of human NSCLC, revealed differential tumorigenicity between these cells. Whereas expression of oncogenic C-RAF in alveolar type II cells readily induced multifocal macroscopic lung tumors independent of the developmental state, few tumors with type II pneumocytes features and incomplete penetrance were found when targeted to Clara cells. Induced tumors did not progress and were strictly dependent on the initiating oncogene. Deinduction of mice resulted in tumor regression due to autophagy rather than apoptosis. Induction of autophagic cell death in regressing lung tumors suggests the use of autophagy enhancers as a treatment choice for patients with NSCLC.
Growth factor induced signaling cascades are key regulatory elements in tissue development, maintenance and regeneration. Perturbations of these cascades have severe consequences, leading to developmental disorders and neoplastic diseases. As a major function in signal transduction, activating mutations in RAF family kinases are the cause of human tumorigenesis, where B-RAF V600E has been identified as the prevalent mutant. In order to address the oncogenic function of B-RAF V600E, we have generated transgenic mice expressing the activated oncogene specifically in lung alveolar epithelial type II cells. Constitutive expression of B-RAF V600E caused abnormalities in alveolar epithelium formation that led to airspace enlargements. These lung lesions showed signs of tissue remodeling and were often associated with chronic inflammation and low incidence of lung tumors. The inflammatory cell infiltration did not precede the formation of the lung lesions but was rather accompanied with late tumor development. These data support a model where the continuous regenerative process initiated by oncogenic B-RAF-driven alveolar disruption provides a tumor-promoting environment associated with chronic inflammation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.