Weightlessness or microgravity of spaceflight induces bone loss due in part to decreased bone formation by unknown mechanisms. Due to difficulty in performing experiments in space, several ground-based simulators such as the Rotating Wall Vessel (RWV) and Random Positioning Machine (RPM) have become critical venues to continue studying space biology. However, these simulators have not been systematically compared to each other or to mechanical stimulating models. Here, we hypothesized that exposure to RWV inhibits differentiation and alters gene expression profiles of 2T3 cells, and a subset of these mechanosensitive genes behaves in a manner consistent to the RPM and opposite to the trends incurred by mechanical stimulation of mouse tibiae. Exposure of 2T3 preosteoblast cells to the RWV for 3 days inhibited alkaline phosphatase activity, a marker of differentiation, and downregulated 61 and upregulated 45 genes by more than twofold compared to static 1 g controls, as shown by microarray analysis. The microarray results were confirmed by real-time PCR and/or Western blots for seven separate genes and proteins including osteomodulin, runx2, and osteoglycin. Comparison of the RWV data to the RPM microarray study that we previously published showed 14 mechanosensitive genes that changed in the same direction. Further comparison of the RWV and RPM results to microarray data from mechanically loaded mouse tibiae reported by an independent group revealed that three genes including osteoglycin were upregulated by the loading and downregulated by our simulators. These mechanosensitive genes may provide novel insights into understanding the mechanisms regulating bone formation and potential targets for countermeasures against decreased bone formation during space flight and in pathologies associated with lack of bone formation.
Postprimary tuberculosis occurs in immunocompetent people infected with Mycobacterium tuberculosis. It is restricted to the lung and accounts for 80% of cases and nearly 100% of transmission. Little is known about the immunopathology of postprimary tuberculosis due to limited availability of specimens. Tissues from 30 autopsy cases of pulmonary tuberculosis were located. Sections of characteristic lesions of caseating granulomas, lipid pneumonia, and cavitary stages of postprimary disease were selected for immunohistochemical studies of macrophages, lymphocytes, endothelial cells, and mycobacterial antigens. A higher percentage of cells in lipid pneumonia (36.1%) and cavitary lesions (27.8%) were positive for the dendritic cell marker DEC-205, compared to granulomas (9.0%, P < .05). Cavities contained significantly more T-regulatory cells (14.8%) than found in lipid pneumonia (5.2%) or granulomas (4.8%). Distribution of the immune cell types may contribute to the inability of the immune system to eradicate tuberculosis.
Studies conducted in real Space and in ground-based microgravity analog systems (MAS) have demonstrated changes in numerous lymphocyte functions. In this investigation we explored whether the observed functional changes in lymphocytes in MAS are associated with changes in gene expression. NASA-developed Rotating Wall Vessel (RWV) bioreactor was utilized as a MAS. Activated T lymphocytes were obtained by adding 100 ng/ml of anti-CD3 and 100 U/ml of IL-2 in RPMI medium to blood donor mononuclear cells for 4 days. After that the cells were washed and additionally cultured for up to 2 weeks with media (RPMI, 10% FBS and 100 U/ml IL-2) replacement every 3-4 days. Flow cytometry analysis had proven that activated T lymphocytes were the only cells remaining in culture by that time. They were split into two portions, cultured for additional 24 h in either static or simulated microgravity conditions, and used for RNA extraction. The gene expression was assessed by Affymetrix GeneChip Human U133A array allowing screening for expression of 18,400 genes. About 4-8% of tested genes responded to MG by more than a 1.5-fold change in expression; however, reproducible changes were observed only in 89 genes. Ten of these genes were upregulated and 79 were downregulated. These genes were categorized by associated pathways and viewed graphically through histogram analysis. Separate histograms of each pathway were then constructed representing individual gene expression fold changes. Possible functional consequences of the identified reproducible gene expression changes are discussed.
The fusion of mouse and human melanoma cells that were tumorigenic but had different metastatic capabilities resulted in hybrids that were metastatic when injected intravenously or subcutaneously into nude mice, regardless of whether it was the mouse or the human melanoma clone that was metastatic. The H7 hybrid line, formed by fusing murine nonmetastatic K1735 C19 cells with human metastatic A375 C15 cells retained high metastatic potential over more than 50 sub-culture passages, suggesting that the dominant metastatic phenotype in these hybrid cells was stable. Using fluorescent in situ hybridization (FISH), human chromosome 17 was consistently identified as the predominant human chromosome in the majority of H7 cells tested between passages 20 and 60. Western blot analysis showed that the hybrid cells expressed human nm23 protein, indicating that at least one gene on the human chromosome 17 was functional. Immunocytochemistry and immunoprecipitation showed that the metastatic A375 C15 and H7 cells expressed p53 protein, but that the nonmetastatic K1735 C19 melanoma cells did not. Sequencing the human p53 gene in A375 C15N and H7 showed mutations in exon 7. Using a bioassay technique, we showed that K1735 C19 cells can spread from subcutaneous tumors to the lungs of nude mice yet fail to form metastases. With the addition of human chromosome 17 from A375 C15 cells, which carries a mutant p53 gene, the cells readily formed lung metastases. In this melanoma hybrid, a mutant p53 gene appears to confer a survival advantage on cells arrested in the lungs of nude mice and thus contributes to the growth of metastatic cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.