Most bamboo species including Moso bamboo (Phyllostachys edulis) are tropical or subtropical plants that greatly contribute to human well-being. Low temperature is one of the main environmental factors restricting bamboo growth and geographic distribution. Our knowledge of the molecular changes during bamboo adaption to cold stress remains limited. Here, we provided a general overview of the cold-responsive transcriptional profiles in Moso bamboo by systematically analyzing its transcriptomic response under cold stress. Our results showed that low temperature induced strong morphological and biochemical alternations in Moso bamboo. To examine the global gene expression changes in response to cold, 12 libraries (non-treated, cold-treated 0.5, 1 and 24 h at −2 °C) were sequenced using an Illumina sequencing platform. Only a few differentially expressed genes (DEGs) were identified at early stage, while a large number of DEGs were identified at late stage in this study, suggesting that the majority of cold response genes in bamboo are late-responsive genes. A total of 222 transcription factors from 24 different families were differentially expressed during 24-h cold treatment, and the expressions of several well-known C-repeat/dehydration responsive element-binding factor negative regulators were significantly upregulated in response to cold, indicating the existence of special cold response networks. Our data also revealed that the expression of genes related to cell wall and the biosynthesis of fatty acids were altered in response to cold stress, indicating their potential roles in the acquisition of bamboo cold tolerance. In summary, our studies showed that both plant kingdom-conserved and species-specific cold response pathways exist in Moso bamboo, which lays the foundation for studying the regulatory mechanisms underlying bamboo cold stress response and provides useful gene resources for the construction of cold-tolerant bamboo through genetic engineering in the future.
Cracking con-rod is an advanced high-precision connecting structure based on brittle expansion, breaking and reconnection of steel, to solve the problem of assembly circle missing. High carbon micro-alloyed steel C70S6, as a dominant material for the production of cracking con-rod, has extremely strict requirements on non-metallic inclusions in steel and microstructure stability. Continuous casting tundish plays an important role in removing large-sized inclusions and stabilizing casting quality. Aiming at the inconsistent casting quality of C70S6 steel produced by a three-strand asymmetric tundish and the frequent occurrence of slag entrapment problems in Xining Special Steel, the tundish structure was optimized by means of physical modelling combined with numerical simulation, and the quality of the bloom castings and subsequent hot-rolled products before and after optimization were compared based on volume production. The results show that a new flow control design to the tundish can effectively improve the consistency of its metallurgical effect for each of the three strands and the following overall product quality, in which the flow field and temperature field in the tundish are more uniform. This is due to the adoption of a vortex inhibitor and an optimized wall structure according to the measured RTD curve, ink trajectory and numerical simulation on the 3-D streamline contours and temperature distribution in the tundish. The peak concentration of outlet 1 is decreased from 6.5 before optimization to less than 2.0 after optimization, which means the elimination or alleviation of the local short-circuit flow. The maximum temperature difference of C70S6 molten steel measured at the outlets of the tundish three strands is decreased from 2–5 °C to 1–3 °C, which is in good agreement with the numerical simulation results. The difference in columnar crystal ratio of the corresponding bloom castings is decreased from 2.27–3.17% to 1.26–1.85%, and the consistency of central carbon segregation index is also significantly improved. In addition, the difference in oxygen content among the three strand blooms is decreased from 1.7–3.5 ppm to 0.8–1.9 ppm. As a result, the overall mechanical properties and microstructure stability of the hot-rolled products are improved statistically, in which the hardness fluctuation is decreased from 84 HBW to 60 HBW, the inclusion grade of types B + C + D + Ds is reduced to 1.105, and the occurrence rate of Ds dropped to 0.118%. Accordingly, the failure rate of the cracking con-rod is controlled stably within 4‰, and the fracture is generally smoother than that before tundish optimization. In summary, the flow field optimization to a multi-strand asymmetric tundish has a clear effect on improving the overall quality of its bloom castings and rolled products, which should be paid more attention industrially. Meanwhile, the present study provides a reliable theoretical and experimental reference for the improvement of metallurgical effects of an asymmetric-typed tundish commonly used in special steel production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.