Indoleamine 2,3-dioxygenase (IDO, subsequently named IDO1) can degrade the level of essential amino acid tryptophan in mammals, and catalyze the initial and rate-limiting step through the kynurenine pathway. Broad evidence implies that IDO is overexpressed in both tumor cells and antigen-presenting cells, facilitating the escape of malignant tumors from immune surveillance. In the past decades, the inhibition of IDO has been one of the most promising areas in cancer immunotherapy and many potential inhibitors of IDO have been designed, synthesized and evaluated, among which d-1-methyl-tryptophan and INCB24360 have advanced to clinical trial stage. This review aims to give an overview of the rationale for IDO as a therapeutic target as well as the research progress of IDO inhibitors.
This review covers the recent advances in the development of small RGD (Arg-Gly-Asp sequence) containing peptides and their mimetics as potential antithrombotic agents. Glycoprotein IIb/IIIa (GPIIb/IIIa) antagonists include monoclonal antibodies, RGD peptides, peptide hybrids and nonpeptide mimetics. The current trend in the development of nonpeptide mimetics is clearly directed toward orally active and safe antithrombotic drug candidates. But several nonpeptide mimetics, being evaluated for their oral activity in human clinical trials, are currently not approved for clinical use due to poor safety profile. It is expected that newer and more effective nonpeptide mimetics will be developed in the near future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.