The unfolded protein response (UPR) is an intracellular signaling pathway that regulates the protein folding and processing capacity of the endoplasmic reticulum (ER). The UPR is induced by the pharmacological agents that perturb ER functions but is also activated upon excessive accumulation of the mutant secretory proteins that are unable to attain correct three-dimensional structure and are thus retained in the ER. Such defects in intracellular protein transport underlie the development of a number of phenotypically diverse inherited pathologies, termed endoplasmic reticulum storage diseases (ERSD). We have studied UPR development in two similar ERSDs, human congenital goiter caused by the C1264R and C1996S mutations in the thyroglobulin (Tg) gene and non-goitrous congenital hypothyroidism in rdw dwarf rats determined by the G2320R Tg mutation. In both cases, these mutations rendered Tg incapable of leaving the ER. A major ER chaperone immunoglobulin-binding protein (BiP), and a novel putative escort chaperone endoplasmic reticulum protein 29 KDa (ERp29) were found to be associated with Tg, which might be interpreted as the contribution of the quality control machinery to the previously shown retention of Tg in the ER. We have extended our earlier observations of ER chaperone induction with the identification of the additional ER (ERp29, ERp72, calreticulin, protein disulfide isomerase (PDI)), cytoplasmic (heat shock protein (HSP)70, HSP90) and mitochondrial (mtHSP70) upregulated chaperones and folding enzymes. Activation of the transcriptional arm of UPR, as judged by the appearance of the spliced (active) form of X-box binding protein (XBP1) and processed activating transcription factor 6 (ATF6) transcription factors was suggested to contribute to the overexpression of the ER chaperones. The processing of ATF6 was observed in both human and rat tissues with Tg mutations. Whereas, in human tissues, weak splicing of XBP1 mRNA was detected only in the C1264R mutant, all rat thyroids including wild-type contained significant amounts of the spliced form of XBP1 as opposed to human liver and rat brain tissues, implying the existence of a previously unknown tissue-specific regulation of XBP1 processing.
Abstract:The relationship among ultrasonic vocalization (USV), prolactin and maternal behavior was investigated in lactating rat mothers and their pups. The lactating mother had a cannula inserted into the external jugular vein, and was exposed to USVs emitted from a pup immediately. Changes of prolactin and maternal behavior were determined. Prolactin increased dramatically during exposure to USVs, when maternal search, retrieving and nest building behavior appeared significantly. These results suggested that the relationship among USV, prolactin and maternal behavior was included in communication between lactating mother and pup. Key words: lactating rat, maternal behavior, prolactin, ultrasonic vocalization (USV) tion between lactation mother and pup in rodents might include relationships involving prolactin, maternal behavior and USVs. In the present age, the relationship between parent and child is becoming weak in human being, therefore the basic study of the communication using laboratory animals is significant.In this study, we tried to verify the relationship among USV, prolactin and maternal behaviors by the exposing lactation mother with a cannula inserted into the external jugular vein to USVs.
SUMMARY:We investigated whether the kinin-generating system enhanced angiogenesis in chronic and proliferative granuloma and in tumor-surrounding stroma. In rat sponge implants, angiogenesis was gradually developed in normal Brown Norway Kitasato rats (BN-Ki). The development of angiogenesis was significantly suppressed in kininogen-deficient Brown Norway Katholiek rats (BN-Ka). The angiogenesis enhanced by basic fibroblast growth factor was also significantly less marked in BN-Ka than in BN-Ki. Naturally occurring angiogenesis was significantly suppressed by B 1 or B 2 antagonist. mRNA of vascular endothelial growth factor was more highly expressed in the granulation tissues in BN-Ki than in BN-Ka. Daily topical injections of aprotinin, but not of soy bean trypsin inhibitor, suppressed angiogenesis. Daily topical injections of low-molecular weight kininogen enhanced angiogenesis in BN-Ka. Topical injections of serum from BN-Ki, but not from BN-Ka, also facilitated angiogenesis in BN-Ka. FR190997, a nonpeptide mimic of bradykinin, promoted angiogenesis markedly, with concomitant increases in vascular endothelial growth factor mRNA. Angiogenesis in the granulation tissues around the implanted Millipore chambers containing Walker-256 cells was markedly more suppressed in BN-Ka than in BN-Ki. Our results suggest that endogenous kinin generated from the tissue kallikrein-kinin system enhances angiogenesis in chronic and proliferative granuloma and in the stroma surrounding a tumor. Thus, the agents for the kinin-generating system and/or kinin receptor signaling may become useful tools for controlling angiogenesis. (Lab Invest 2002, 82:871-880).
Thyroid hormones play crucial roles in the development and functional maintenance of the central nervous system. Despite extensive studies of the neural function of thyroid hormones, little is known about the effects of hypothyroidism on behavioural traits and the mechanisms underlying such effects. In the present study, we report an investigation of congenitally hypothyroid mutant rdw rats, revealing a novel function of thyroid hormones in the central nervous system. The rdw rats were subjected to behavioural analyses such as the rotarod test, open field test and circadian activity measurement. To determine the cause of behavioural disorders, cerebellar morphogenesis was examined by immunohistochemical analysis, and the axonal transport of dopamine in the nigrostriatal pathway was analysed by high-performance liquid chromatography and western blotting. The effects of thyroxine administration to the rdw rats were examined by behavioural analysis. The rdw rats showed severe impairment of motor coordination and balance. This could be explained by the fact that the rats showed severe retardation of cerebellar morphogenesis, which correlates with the small somata and poor dendritic arborisation of Purkinje cells and retarded migration of granule cells particularly during the first two postnatal weeks. Moreover, the rdw rats showed hypoactivity, characterised by decreased circadian locomotor activity. After weaning, thyroxine administration improved the dwarfism in rdw rats but had no effect on cerebellar function. In addition, the rdw rats showed anxiety and depression intrinsically to novel surroundings. Interestingly, the rdw rats showed high levels of dopamine in the substantia nigra and low levels in the striatum, an important centre for the coordination of behaviour. Furthermore, low levels of tubulin in the striatum were detected, indicating the aberrant axonal transport of dopamine in the nigrostriatal pathway as a result of the reduced delivery of microtubules. These findings indicate an important function of thyroid hormones in cerebellar formation and in the regulation of axonal transport of dopamine. Moreover, rdw rats will be useful for studies of brain function and behavioural disorders in congenital hypothyroidism.
Diabetic neuropathy is the most common complication of diabetes. We examined the levels and the mRNA expression of myelin proteins in the sciatic nerves and the brains of streptozotocin-induced diabetic rats. The diabetic rats exhibited a decrease in body weight, elevation of the blood glucose level and a decrease in motor nerve conduction velocity at 2 weeks after streptozotocin injection. In the sciatic nerves of diabetic rats, the level of P0 protein and its mRNA expression were markedly reduced at 20 weeks after the injection. In the brains, the levels of proteolipid protein and myelin-associated glycoprotein and their mRNA expression were selectively decreased at 20 weeks after the injection. This affected expression of myelin proteins was found even when no histological abnormalities were detectable. Considering the functional significance of myelin proteins, this impairment of protein expression is possibly involved in the pathogenesis of diabetic neuropathy, including that in brain disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.