Minipigs, 2, 4, 6 months old, were used to evaluate the relationship between myelination in the fiber tracts of the central nervous system (CNS) of this animal during development. Histological results showed an increased density of the myelinated fibers as well as branching of these fibers in the areas studied, including the cortical white matter, olfactory tract, the corticospinal tract, the fasciculus cuneatus and the spinal V nucleus from 2 to 6 months old. By 6 months, the pig was sexually matured. Concomitantly, there was an increase in high signal-intensity regions (sites) in the magnetic resonance T1-weighted images as myelination progressed. There is a good correlation between the histologically observed progress of myelination and the T1-weighted images in the development of the CNS of the pig.
Hypoxia is a frequent challenge to aquatic vertebrates as compared with that for their terrestrial counterparts. All vertebrates respond to hypoxia in a similar, but not identical manner, indicating that these responses appeared early in the evolution of vertebrates. The aim of this study is to find out the effects of hypoxia on apoptosis in the central nervous system (CNS) of sturgeon, an archaic fish. With the regional specialization of the CNS, we hypothesize that if cell death does occur, the response will vary between regions, i.e., some CNS areas will be more susceptible to hypoxia than the others would. Sturgeons (Acipenser shrenckii) were subjected to hypoxia by exposure to either air or hypoxic water. After 6- or 30-h recovery they were sacrificed and the following regions of the CNS: retina, olfactory lobe, optic tectum, pituitary, cerebellum, pons/medulla, and spinal cord were examined by the terminal transferase mediated dUTP nick end labeling technique and for the cleaved fragment of activated caspase-3 by Western blotting. In hypoxia-treated sturgeons, the retina, optic tectum, pituitary, and spinal cord were found to have significantly more apoptotic cells than did untreated sturgeons at both 6 and 30 h after the hypoxic insults, indicating prolonged damage. Apoptosis was confirmed by Western blotting of the cleaved fragment of activated caspase-3. Olfactory lobe, cerebellum, and pons/medulla had relatively few apoptotic cells. The CNS of sturgeon showed a differential pattern of apoptosis in response to hypoxia.
1. Neuropeptide Y is found throughout the central nervous system where it appears to play a wide range of often poorly understood functions. In this study, the distribution of neuropeptide Y immunoreactive (NPY-ir) neurons in the brainstem, cerebellum, and cerebral cortex of human fetuses ranging in age from 11 gestational weeks to term was investigated by immunohistochemistry. 2. The NPY-ir cells were detected in the dorsal and ventral rostral midbrain and the interpeduncular nucleus by 21 weeks and 32 weeks of gestation, respectively. Although no positive cells were found in the pons, the NPY-ir fibers were detected there at 32 gestational weeks. 3. The vagal, hypoglossal, and olivary nuclei of the medulla oblongata contained immunoreactive cells by week 21 and the medullary reticular formation by week 25 of gestation. In most of these locations, both the number and size of neuropeptide Y positive cells were greater at birth and reached maximal values of 100-400 cells per 1 mm2 and 2-5 microm in diameter, respectively. 4. In the cerebellum, numerous NPY-ir horizontal and granule cells, as well as the cells within the dentate nucleus were observed as early as 21 weeks of gestation. 5. The NPY-ir cells were also detected in the developing cerebral cortex, with the earliest activity observed within the temporal cortex at 14 weeks of gestation. By week 21, positive cells appeared in the visual, frontal, sensory, and motor cortices. Most of these cells were bipolar or multipolar in morphology but their numbers at birth were relatively low. 6. Our results show a wide distribution of the NPY-ir cells in the developing human brain and offer supporting evidence for the important modulatory role of NPY in both the fetus and adult.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.