The purpose of this paper is to numerically study the effect of texture bottom profile on static, dynamic, and stability performance parameters of hydrodynamic journal bearings. The different performance parameters of square textured journal bearings with different bottom profiles are numerically investigated and compared with those of smooth journal bearing. There are five bottom profiles of this square texture: flat, curved, isosceles triangle (T1), oblique triangle (T2), and oblique triangle (T3). The static and dynamic coefficients are calculated by solving the steady-state Reynolds equation and the perturbation equations with FDM numerical technique. The performance characteristics under different texture distribution, depth, and bottom profiles are studied, and the current numerical results show that the selection of texture parameters is crucial to improve the static, dynamic, and stability performances of hydrodynamic journal bearing. Meanwhile, it is also found that the square texture with a flat bottom profile has a higher improvement in the values of static performance parameters in comparison to those other bottom profiles. Moreover, the simulation results indicate that the dynamic and stability performances improvement of textured journal bearing is also significant, especially when the eccentricity ratio is smaller.
The seatbelt restraint load is one of the primary sources of occupant chest injury. Thus, studying the different biomechanical responses of chest by varying the seatbelt loads will result in a significant improvement in seatbelt protection performance. Based on the high-biofidelity mechanical dummy model, a sled-dummy test was conducted to investigate the differences in chest injury outcomes caused by the variation of seatbelt load paths or load processes. The chest kinematics and kinetics are compared to determine the influence of load factors on these biomechanical outcomes. Results show that chest injury severity has a positive nonlinear correlation with impact speed. However, the injury risk is mainly determined by the seatbelt peak load in the chest deflection analysis. The results of this study can provide a reference to seatbelt safety design and optimization. The model and method can be used in other research works on the biomechanics of frontal impact.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.