Traffic congestion prediction is critical for implementing intelligent transportation systems for improving the efficiency and capacity of transportation networks. However, despite its importance, traffic congestion prediction is severely less investigated compared to traffic flow prediction, which is partially due to the severe lack of large-scale high-quality traffic congestion data and advanced algorithms. This paper proposes an accessible and general workflow to acquire large-scale traffic congestion data and to create traffic congestion datasets based on image analysis. With this workflow we create a dataset named Seattle Area Traffic Congestion Status (SATCS) based on traffic congestion map snapshots from a publicly available online traffic service provider Washington State Department of Transportation. We then propose a deep autoencoder-based neural network model with symmetrical layers for the encoder and the decoder to learn temporal correlations of a transportation network and predicting traffic congestion. Our experimental results on the SATCS dataset show that the proposed DCPN model can efficiently and effectively learn temporal relationships of congestion levels of the transportation network for traffic congestion forecasting. Our method outperforms two other state-of-the-art neural network models in prediction performance, generalization capability, and computation efficiency.
The gear fault signal under different working conditions is non-linear and non-stationary, which makes it difficult to distinguish faulty signals from normal signals. Currently, gear fault diagnosis under different working conditions is mainly based on vibration signals. However, vibration signal acquisition is limited by its requirement for contact measurement, while vibration signal analysis methods relies heavily on diagnostic expertise and prior knowledge of signal processing technology. To solve this problem, a novel acoustic-based diagnosis (ABD) method for gear fault diagnosis under different working conditions based on a multi-scale convolutional learning structure and attention mechanism is proposed in this paper. The multi-scale convolutional learning structure was designed to automatically mine multiple scale features using different filter banks from raw acoustic signals. Subsequently, the novel attention mechanism, which was based on a multi-scale convolutional learning structure, was established to adaptively allow the multi-scale network to focus on relevant fault pattern information under different working conditions. Finally, a stacked convolutional neural network (CNN) model was proposed to detect the fault mode of gears. The experimental results show that our method achieved much better performance in acoustic based gear fault diagnosis under different working conditions compared with a standard CNN model (without an attention mechanism), an end-to-end CNN model based on time and frequency domain signals, and other traditional fault diagnosis methods involving feature engineering.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.