In this study, biased estimators for the shape parameter of a classical Pareto distribution are proposed using two different shrinkage techniques which give a smaller mean square error than an unbiased estimator. Then these obtained biased estimators are compared with the unbiased estimator by the means of their mean square error.
Ordinary least square (OLS), maximum likelihood (ML) and robust methods are the widely used methods to estimate the parameters of a linear regression model. It is well known that these methods perform well under some distributional assumptions on error terms. However, these distributional assumptions on the errors may not be appropriate for some data sets. In these case, nonparametric methods may be considered to carry on the regression analysis. Empirical likelihood (EL) method is one of these nonparametric methods. The EL method maximizes a function, which is multiplication of the unknown probabilities corresponding to each observation, under some constraints inherited from the normal equations in OLS estimation method. However, it is well known that the OLS method has poor performance when there are some outliers in the data. In this paper, we consider the EL method with robustifyed constraints. The robustification of the constraints is done by using the robust M estimation methods for regression. We provide a small simulation study and a real data example to demonstrate the capability of the robust EL method to handle unusual observations in the data. The simulation and real data results reveal that robust constraints are needed when heavy tailedness and/or outliers are possible in the data.
Marshall-Olkin extended Burr XII (MOEBXII) distribution is proposed by Al-Saiari et al. (2014) to obtain a more ‡exible family of distributions. Some estimation methods like maximum likelihood, Bayes and M estimations are used to estimate the parameters of the MOEBXII distribution in literature. In this paper, we propose to use Maximum Lq (MLq) estimation method to …nd alternative estimators for the parameters of the MOEBXII distribution. We give some simulation studies and a real data example to compare the performance of the MLq estimators with the maximum likelihood and M estimators. According to our results MLq estimation method is a good alternative to the maximum likelihood and M estimation methods in the presence of outliers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.