Probabilistic planning is very useful for handling uncertainty in planning tasks to be carried out by robots. ROSPlan is a framework for task planning in the Robot Operating System (ROS), but until now it has not been possible to use probabilistic planners within the framework. This systems paper presents a standardized integration of probabilistic planners into ROSPlan that allows for reasoning with non-deterministic effects and is agnostic to the probabilistic planner used. We instantiate the framework in a system for the case of a mobile robot performing tasks indoors, where probabilistic plans are generated and executed by the PROST planner. We evaluate the effectiveness of the proposed approach in a real-world robotic scenario.
Explainable AI is an important area of research within which Explainable Planning is an emerging topic. In this paper, we argue that Explainable Planning can be designed as a service -that is, as a wrapper around an existing planning system that utilises the existing planner to assist in answering contrastive questions. We introduce a prototype framework to facilitate this, along with some examples of how a planner can be used to address certain types of contrastive questions. We discuss the main advantages and limitations of such an approach and we identify open questions for Explainable Planning as a service that identify several possible research directions.
In automated planning, the need for explanations arises when there is a mismatch between a proposed plan and the user’s expectation. We frame Explainable AI Planning as an iterative plan exploration process, in which the user asks a succession of contrastive questions that lead to the generation and solution of hypothetical planning problems that are restrictions of the original problem. The object of the exploration is for the user to understand the constraints that govern the original plan and, ultimately, to arrive at a satisfactory plan. We present the results of a user study that demonstrates that when users ask questions about plans, those questions are usually contrastive, i.e. “why A rather than B?”. We use the data from this study to construct a taxonomy of user questions that often arise during plan exploration. Our approach to iterative plan exploration is a process of successive model restriction. Each contrastive user question imposes a set of constraints on the planning problem, leading to the construction of a new hypothetical planning problem as a restriction of the original. Solving this restricted problem results in a plan that can be compared with the original plan, admitting a contrastive explanation. We formally define model-based compilations in PDDL2.1 for each type of constraint derived from a contrastive user question in the taxonomy, and empirically evaluate the compilations in terms of computational complexity. The compilations were implemented as part of an explanation framework supporting iterative model restriction. We demonstrate its benefits in a second user study.
This work addresses the problem of object delivery with a mobile robot in real-world environments. We introduce a multilayer, modular pushing skill that enables a robot to push unknown objects in such environments. We present a strategy that guarantees obstacle avoidance for object delivery by introducing the concept of a pushing corridor. This allows pushing objects in scattered and dynamic environments while exploiting the available collision-free area. Moreover, to push unknown objects, we propose an adaptive pushing controller that learns local inverse models of robot-object interaction on the fly. We performed exhaustive tests showing that our controller can adapt to various unknown objects with different mass and friction distributions. We show empirically that the proposed pushing skill leads towards successful pushes without prior knowledge and experience. The experimental results also demonstrate that the robot can successfully deliver objects in complex scenarios.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.