Augmenting the automation level of the inland waterway cargo transport sector, coupled with mechatronic innovation in this sector, could increase its competitiveness. This increase might potentially induce a sustainable paradigm shift in the road-dominated inland cargo transport sector. A key enabler of this envisaged shift may be an inland shore control centre (I-SCC) capable of remotely monitoring and controlling inland vessels. Accordingly, this study investigated the concept and design requirements to achieve an inland I-SCC that provides interaction services when supervising an unmanned surface vessel (USV). This I-SCC can help its operator to develop situational awareness and sensemaking. The conducted experiments offered insights into the performance of both the I-SCC system and its operator, and unlock research on the impact on ship sense and harmony when remotely controlling a USV. The Hull-To-Hull project extends the current I-SCC by providing enhanced motion control. This enhancement enables further performance insights and might improve the future monitoring of USVs. The successful I-SCC construction, the preliminary experiments, and the design-extension demonstrate that the I-SCC can serve as an experimental platform for both mechatronic innovation and human-automation integration research in the inland waterway sector, whilst additionally providing fruitful knowledge for adjacent research domains.
This study describes the actuation design and construction of an unmanned scale model inland vessel of type CEMT-I. This proposed design could help to increase the competitiveness of smaller inland vessels which are slowly diminishing. Moreover, this idea aligns with the ambition of the European Commission to increase the cargo flow over waterborne transport. Therefore, this study scaled down a recently designed barge of the European project Watertruck+. These barges have a 360-degrees-steerable steering grid in the bow together with a 360-degrees-steerable four-channel thruster at the stern. This configuration unlocks new and more advanced motion control possibilities compared to conventional actuation systems. The performance of this actuation design, at different propeller speeds and angles, was experimentally identified for the scale model. Furthermore, the implemented back-seat driver control paradigm is discussed at its two levels of implementation. Firstly, the lowest level control, to reach certain desired sytem states, is shown. Secondly, the higher level control, the autonomy system provided by the MOOS-IvP software, is discussed and its interaction with the low level control is demonstrated. The authors believe that the combination of this actuation and control design can unlock new cargo transport opportunities for the European inland waterways.
Expanding the automation level of the freshly introduced fleet of self-propelled Watertruck+ barges, which house fully-rotatable embedded thrusters, might increase their ability to compete with their less sustainable but dominating road-based alternatives. Hydrodynamic motion models, which reveal the manoeuvring capabilities of these barges, can serve as inputs for many pieces of this automation puzzle. No identified motion models or hydrodynamic data seem to be publicly available for the hull design and the novel actuation system configuration of these barges. Therefore, this study offers: (i) decoupled motion model structures for these barges for surge, sway, and yaw, with a focus on the thruster and damping models; (ii) two identification procedures to determine these motion models; (iii) all the experimental data, generated outdoors with a scale model barge to identify (i) based on (ii). In addition, the identified surge models were compared with both computational and empirical data. These comparisons offer more physical insights into the identified model structures and can aid in the model selection for which the desired complexity and accuracy evidently depend on their envisaged application. Finally, this methodology need not be limited to the vessel and actuation types utilised by us.
While Global Navigation Satellite Systems (GNSS) serve as a fundamental positioning technology for autonomous ships in Inland Waterways (IWW), in order to compensate for unexpected signal outages from constellations due to structures such as bridges and high buildings, it is not uncommon to use a sensor fusion setup with GNSS and Inertial Measurement Units (IMU)/Inertial Navigation Systems (INS). However, the accuracy of this fusion relies on the accuracy of the main localization technology itself. In Europe, Galileo and the European Geostationary Navigation Overlay Service (EGNOS) are two satellite navigation systems under civil control and they provide European users with independent access to a reliable positioning satellite signal, claiming better accuracy than what is offered by other accessible systems. Therefore, considering the potential utilization of these systems for autonomous navigation, in this paper, we discuss the results of a case study for benchmarking the accuracy of Galileo and EGNOS in IWW. We used a Coordinate Measurement Machine (CMM) and a sub-cm Real-Time Kinematic (RTK) service which is available in Flanders to quantify the benchmark reference. The results with and without sensor fusion show that Galileo has a better horizontal accuracy profile than standalone Global Positioning System (GPS), and its augmentation with EGNOS is likely to provide European IWW users more accurate positioning levels in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.