Performance degradation due to transistor aging is a significant impediment to high-performance IC design due to increasing concerns of reliability mechanisms such as negative-bias-temperature-instability (NBTI). The concern only grows with technology scaling as the effects of positive bias temperature instability (PBTI) is becoming prominent in future technologies and compounding with the effects of NBTI. Although aging of transistor is inevitable and the magnitude of degradation due to aging varies depending upon the context. Specifically, in power-efficient systems designs, the logic and clock paths are susceptible to static stress resulting in peak degradation due to BTI occurrence when clock is gated. In this article, we present the reliability impact of making systems power efficient and propose a design-for-reliability methodology that can be used in conjunction with low-power design techniques to alleviate the stress conditions caused by rendering circuits in idle state. The technique-BTI-Refresh, is shown to be applicable to both logic and clock paths alike and focuses on preventing prolonged static stress using periodic refreshes to achieve alternating stress. The mechanism is shown to integrate seamlessly into the design at gate-level without requiring any architectural or RT-level changes. Using ISCAS benchmarks and Kogge-Stone-Adder circuits, it is shown to reduce the aging effect in logic path delay due to static stress by up to 50% with negligible area and power overhead. BTI-Refresh is extended to clock-paths to prevent pulse-width degradation due to static aging and with minimal clock-skew.
Medical image fusion is the process of deriving vital information from multimodality medical images. Some important applications of image fusion are medical imaging, remote control sensing, personal computer vision and robotics. For medical diagnosis, computerized tomography (CT) gives the best information about denser tissue with a lesser amount of distortion and magnetic resonance image (MRI) gives the better information on soft tissue with little higher distortion. The main scheme is to combine CT and MRI images for getting most significant information. The need is to focus on less power consumption and less occupational area in the implementations of the applications involving image fusion using discrete wavelet transform (DWT). To design the DWT processor with low power and area, a low power multiplier and shifter are incorporated in the hardware. This low power DWT improves the spatial resolution of fused image and also preserve the color appearance. Also, the adaptation of the lifting scheme in the 2D DWT process further improves the power reduction. In order to implement this 2D DWT processor in field-programmable gate array (FPGA) architecture as a very large scale integration (VLSI)-based design, the process is simulated with Xilinx 14.1 tools and also using MATLAB. When comparing the performance of this low power DWT and other available methods, this high performance processor has 24%, 54% and 53% of improvements on the parameters like standard deviation (SD), root mean square error (RMSE) and entropy. Thus, we are obtaining a low power, low area and good performance FPGA architecture suited for VLSI, for extracting the needed information from multimodality medical images with image fusion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.