In-situ hybrid metal matrix composites were prepared by reinforcing AA6061 aluminium alloy with 10 wt.% of boron carbide (B4C) and 0 wt.% to 6 wt.% of mica. Machinability of the hybrid aluminium metal matrix composite was assessed by conducting drilling with varying input parameters. Surface texture of the hybrid composites and morphology of drill holes were examined through scanning electron microscope images. The influence of rotational speed, feed rate and % of mica reinforcement on thrust force and torque were studied and analysed. Statistical analysis and regression analysis were conducted to understand the significance of each input parameter. Reinforcement of mica is the key performance indicator in reducing the thrust force and torque in drilling of the selected material, irrespective of other parameter settings. Thrust force is minimum at mid-speed (2000 rpm) with the lowest feed rate (25 mm/min), but torque is minimum at highest speed (3000 rpm) with lowest feed rate (25 mm/min). Multi-objective optimization through a non-dominated sorting genetic algorithm has indicated that 1840 rpm of rotational speed, 25.3 mm/min of feed rate and 5.83% of mica reinforcement are the best parameters for obtaining the lowest thrust force of 339.68 N and torque of 68.98 N.m. Validation through experimental results confirms the predicted results with a negligible error (less than 0.1%). From the analysis and investigations, it is concluded that use of Al/10 wt.% B4C/5.83 wt.% mica composite is a good choice of material that comply with European Environmental Protection Directives: 2000/53/CE-ELV for the automotive sector. The energy and production cost of the components can be very much reduced if the found optimum drill parameters are adopted in the production.
Nuclear magnetic resonance (NMR) technique has been used to find the property of atropisomerism in Rilpivirine hydrochloride by variable temperature analysis and various 2D techniques. Both the Rilpivirine hydrochloride (E-isomer) and Impurity-A (Z-isomer) isomers have been differentiated and confirmed by NMR and ultraviolet techniques. Preparative high-performance liquid chromatography isolation for Impurity-A is followed by spectroscopic (NMR, mass spectra, and infrared) investigation that provides a perfect solution for determination of the structure of Rilpivirine and related impurities.
A new process-related impurity of ezetimibe was identified and characterized. The impurity is critical and common to most of the manufacturing routes of ezetimibe. Structural characterization using HMBC indicated the presence of a six-membered ring rather than a nine-membered ring as proposed by the innovator of ezetimibe. Prominently, the existing pharmacopoeial methods for ezetimibe are not capable of detecting this impurity. A control strategy was established by appropriate process control that is capable of purging the impurity to levels comfortably below the regulatory requirement. The formation of the diastereomer impurity during the demonstration of a scale-up batch under the optimized conditions is attributed to epimerization of ezetimibe induced by thermal degradation of the silylating agent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.