Gaucher disease (GD) is an autosomal recessive, lysosomal disorder caused by mutations in the gene for the b-glucocerebrosidase (GBA) enzyme. Presence of the non-functional GBAP pseudogene, which shares high sequence similarity with the functional GBA gene, has made it difficult to carry out molecular analyses of GD, especially recombinant mutations. Using a long-range PCR approach that has been skillfully devised for the easy detection of GBA recombinant mutations, we identified four recombinant mutations including two gene conversion alleles, Rec 1a and Rec 8a, one reciprocal gene fusion allele, Rec 1b, and one reciprocal gene duplication allele, Rec 7b, in Korean patients with GD. Rec 8a, in which the GBAP pseudogene sequence from intron 5 to exon 11 is substituted for the GBA gene is a novel recombinant mutation. All mutations were confirmed by full sequencing of PCR amplicons and/or Southern blot analysis. These results indicate that the usage of long-range PCR may allow the rapid and accurate detection of GBA recombinant mutations and contribute to the improvement of genotyping efficiency in GD patients.
In an effort to develop short antimicrobial peptides with simple amino acid compositions, we generated a series of undecapeptide isomers having the L5K5W formula. Amino acid sequences were designed to be perfectly amphipathic when folded into a helical conformation by converging leucines onto one side and lysines onto the other side of the helical axis. The single tryptophans, whose positions were varied in the primary structures, were located commonly at the critical amphipathic interface in the helical wheel projection. Helical conformations and the tryptophanyl environments of the 11 L5K5W peptides were confirmed and characterized by circular dichroism, fluorescence and nuclear magnetic resonance spectroscopy. All of the isomers exhibited a potent, broad-spectrum of antibacterial activity with just a slight variance in individual potency, whereas their hemolytic activities against human erythrocytes were significantly diversified. Interestingly, helical dispositions and fluorescence blue shifts of the peptides in aqueous trifluoroethanol solutions, rather than in detergent micelles, showed a marked linear correlation with their hemolytic potency. These results demonstrate that our de novo design strategy for amphipathic helical model peptides is effective for developing novel antimicrobial peptides and their hemolytic activities can be estimated in correlation with structural parameters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.