Lithium–sulfur batteries (LSBs) are cost‐effective and high‐energy‐density batteries. However, the insulating nature of active materials, the shuttle effect, and slow redox kinetics lead to severe capacity decay and low rate capabilities. Numerous multimodal approaches have been attempted to tackle these issues and have pushed the cycle stability and energy density to higher levels. Recently, accelerating the redox kinetics using catalytic materials has been considered as a means to realize high‐performance LSBs. In this Minireview, we provide an insightful overview of the advances in the design of LSB catalytic materials and mechanistic descriptions of their catalytic activities.
Lithium–sulfur batteries (LSBs) are cost‐effective and high‐energy‐density batteries. However, the insulating nature of active materials, the shuttle effect, and slow redox kinetics lead to severe capacity decay and low rate capabilities. Numerous multimodal approaches have been attempted to tackle these issues and have pushed the cycle stability and energy density to higher levels. Recently, accelerating the redox kinetics using catalytic materials has been considered as a means to realize high‐performance LSBs. In this Minireview, we provide an insightful overview of the advances in the design of LSB catalytic materials and mechanistic descriptions of their catalytic activities.
A variety of transition metal binary compounds, whose reaction mechanism involves intercalation-initiated conversion, have been extensively studied as anode materials in lithium ion batteries (LIBs).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.