This study suggests that artificial intelligence expert systems with neural network machine learning could be useful in orthodontics. Improved performance was achieved by components such as proper selection of the input data, appropriate organization of the modeling, and preferable generalization.
Dental panoramic radiographs (DPRs) provide information required to potentially evaluate bone density changes through a textural and morphological feature analysis on a mandible. This study aims to evaluate the discriminating performance of deep convolutional neural networks (CNNs), employed with various transfer learning strategies, on the classification of specific features of osteoporosis in DPRs. For objective labeling, we collected a dataset containing 680 images from different patients who underwent both skeletal bone mineral density and digital panoramic radiographic examinations at the Korea University Ansan Hospital between 2009 and 2018. Four study groups were used to evaluate the impact of various transfer learning strategies on deep CNN models as follows: a basic CNN model with three convolutional layers (CNN3), visual geometry group deep CNN model (VGG-16), transfer learning model from VGG-16 (VGG-16_TF), and fine-tuning with the transfer learning model (VGG-16_TF_FT). The best performing model achieved an overall area under the receiver operating characteristic of 0.858. In this study, transfer learning and fine-tuning improved the performance of a deep CNN for screening osteoporosis in DPR images. In addition, using the gradient-weighted class activation mapping technique, a visual interpretation of the best performing deep CNN model indicated that the model relied on image features in the lower left and right border of the mandibular. This result suggests that deep learning-based assessment of DPR images could be useful and reliable in the automated screening of osteoporosis patients.
Diagnosis and treatment planning are the most important steps in the orthognathic surgery for the successful treatment. The purpose of this study was to develop a new artificial intelligent model for surgery/non-surgery decision and extraction determination, and to evaluate the performance of this model. The sample used in this study consisted of 316 patients in total. Of the total sample, 160 were planned with surgical treatment and 156 were planned with non-surgical treatment. The input values of artificial neural network were obtained from 12 measurement values of the lateral cephalogram and 6 additional indexes. The artificial intelligent model of machine learning consisted of 2-layer neural network with one hidden layer. The learning was carried out in 3 stages, and 4 best performing models were adopted. Using these models, decision-making success rates of surgery/non-surgery, surgery type, and extraction/non-extraction were calculated. The final diagnosis success rate was calculated by comparing the actual diagnosis with the diagnosis obtained by the artificial intelligent model. The success rate of the model showed 96% for the diagnosis of surgery/non-surgery decision, and showed 91% for the detailed diagnosis of surgery type and extraction decision. This study suggests the artificial intelligent model using neural network machine learning could be applied for the diagnosis of orthognathic surgery cases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.