This paper presents an electromyographic (EMG) pattern recognition method to identify motion commands for the control of a prosthetic arm by evidence accumulation based on artificial intelligence with multiple parameters. The integral absolute value, variance, autoregressive (AR) model coefficients, linear cepstrum coefficients, and adaptive cepstrum vector are extracted as feature parameters from several time segments of EMG signals. Pattern recognition is carried out through the evidence accumulation procedure using the distances measured with reference parameters. A fuzzy mapping function is designed to transform the distances for the application of the evidence accumulation method. Results are presented to support the feasibility of the suggested approach for EMG pattern recognition.
Decomposition of a stereo signal into the primary and ambient components is a key step to the stereo upmix and it is often based on the principal component analysis (PCA). However, major shortcoming of the PCA-based method is that accuracy of the decomposed components is dependent on both the primary-to-ambient power ratio (PAR) and the panning angle. Previously, a modified PCA was suggested to solve the PAR-dependent problem. However, its performance is still dependent on the panning angle of the primary signal. In this paper, we proposed a new PCA-based primary-ambient decomposition algorithm whose performance is not affected by the PAR as well as the panning angle. The proposed algorithm finds scale factors based on a criterion that is set to preserve the powers of the mixed components, so that the original primary and ambient powers are correctly retrieved. Simulation results are presented to show the effectiveness of the proposed algorithm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.