-Recently, computer form were smaller than before because of computing technique's development and many wearable device are formed. So, computer's cognition of human emotion has importantly considered , thus researches on analyzing the state of emotion are increasing. Human voice includes many information of human emotion. This paper proposes a discriminative feature vector selection for emotion classification based on speech. For this, we extract some feature vectors like Pitch, MFCC, LPC, LPCC from voice signals are divided into four emotion parts on happy, normal, sad, angry and compare a separability of the extracted feature vectors using Bhattacharyya distance. So more effective feature vectors are recommended for emotion classification.
Ever since the development of digital devices, the recognition of human gestures has played an important role in many Human-Computer interface applications. Various wearable devices have been developed, and inertial sensors, magnetic sensors, gyro sensors, electromyography, force-sensitive resistors, and other types of sensors have been used to identify gestures. However, there are different drawbacks for each sensor, which affect the detection of gestures. In this paper, we present a new gesture recognition method using a Flexible Epidermal Tactile Sensor based on strain gauges to sense deformation. Such deformations are transduced to electric signals. By measuring the electric signals, the sensor can estimate the degree of deformation, including compression, tension, and twist, caused by movements of the wrist. The proposed sensor array was demonstrated to be capable of analyzing the eight motions of the wrist, and showed robustness, stability, and repeatability throughout a range of experiments aimed at testing the sensor array. We compared the performance of the prototype device with those of previous studies, under the same experimental conditions. The result shows our recognition method significantly outperformed existing methods.
In this paper, we propose a deep neural network-based method for estimating speed of vehicles on roads automatically from videos recorded using unmanned aerial vehicle (UAV). The proposed method includes the following; (1) detecting and tracking vehicles by analyzing the videos, (2) calculating the image scales using the distances between lanes on the roads, and (3) estimating the speeds of vehicles on the roads. Our method can automatically measure the speed of the vehicles from the only videos recorded using UAV without additional information in both directions on the roads simultaneously. In our experiments, we evaluate the performance of the proposed method with the visual data at four different locations. The proposed method shows 97.6% recall rate and 94.7% precision rate in detecting vehicles, and it shows error (root mean squared error) of 5.27 km/h in estimating the speeds of vehicles.
In this paper, the complexity of Viterbi Architectures is compared in the point of the survivor sequence management. Moreover, the Viterbi Decoder with Constraint length(K=7), Truncation length(T=5K), and Code rate(R=1/3) is implemented. The Viterbi Decoder uses the Radix-4 as the ACS method to obtain high throughput and low latency. The Modified State Mapping algorithm is also applied to achieve low latency as the survivor sequence management.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.