The human gut microbiome is closely linked to mental health and sleep. We aimed to verify the efficacy and safety of probiotic NVP-1704, a mixture of Lactobacillus reuteri NK33 and Bifidobacterium adolescentis NK98, in improving stress, depression, anxiety, and sleep disturbances, along with the measurement of some blood biomarkers. A total of 156 healthy adults with subclinical symptoms of depression, anxiety, and insomnia were retrospectively registered and randomly assigned to receive either NVP-1704 (n = 78) or a placebo (n = 78) for eight weeks. Participants completed the Stress Response Inventory, Beck’s Depression and Anxiety Inventory, Pittsburg Sleep Quality Index, and Insomnia Severity Index at baseline, at four and eight weeks of treatment. Pre- and post-treatment blood tests for biomarkers were conducted. After intervention, gut microbiota composition was quantified by pyrosequencing the bacterial 16S rRNA gene. The NVP-1704 group had a more significant reduction in depressive symptoms at four and eight weeks of treatment, and anxiety symptoms at four weeks compared to the placebo group. Those receiving NVP-1704 also experienced an improvement in sleep quality. NVP-1704 treatment led to a decrease in serum interleukin-6 levels. Furthermore, NVP-1704 increased Bifidobacteriaceae and Lactobacillacea, whereas it decreased Enterobacteriaceae in the gut microbiota composition. Our findings suggest that probiotic NVP-1704 could be beneficial for mental health and sleep.
The deubiquitinating enzyme USP1 contains highly conserved motifs forming its catalytic center. Recently, the COSMIC mutation database identified a mutation in USP1 at Asp‐199 in endometrial cancer. Here, we investigated the role of Asp‐199 for USP1 function. The mutation of aspartic acid to alanine (D199A) resulted in failure of USP1 to undergo autocleavage and form a complex with ubiquitin, indicating D199A Usp1 is catalytically inactive. The D199A mutation did not affect the interaction with Uaf1. Moreover, D199A Usp1 had defects in deubiquitination of FANCD2 and PCNA and displayed reduced FANCD2 foci formation and DNA repair efficiency. Furthermore, mutation of Asp‐199 to glutamic acid resulted in phenotypes similar to the D199A mutation. Collectively, our findings demonstrate the importance of Asp‐199 for USP1 activity and suggest the implications of USP1 downregulation in cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.