This letter presents an approach to maximize the output power and efficiency of a Doherty power amplifier (PA). The conventional carrier PA having match, used in a symmetric Doherty PA, does not deliver the saturated high efficiency at the 6 dB back-off power but at the 5.5 dB back-off power due to the knee voltage effect. To solve the problem, the gate biases of the carrier and peaking PAs are adapted. The gate bias voltage of the carrier PA is optimized for a higher peak output power, delivering a 3 dB larger peak power at match. That of the peaking PA is also optimized to have the same peak power of the carrier PA. A Doherty PA with the concept is designed using a 45 W gallium nitride (GaN) high electron mobility transistors (HEMT) for the carrier and peaking cells at 1.94 GHz. The measured average output power, drain/power-added efficiencies and gain are 44.35 dBm, 60.5/57.2%, and 12.75 dB for a 10 MHz long term evolution (LTE) signal with a 6.5 dB peak-to-average power ratio (PAPR).
Index Terms-Drain efficiency (DE), Gallium nitride (GaN), long term evolution (LTE), power amplifier (PA).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.