The present work aimed to examine the feasibility of using artificial neural network (ANN) based models to obtain accurate estimates of nitrate loads in river basins, which is an important parameter for water quality management. Both Single ANN (SANN) and Ensemble ANN (EANN) models were used to obtain the load estimations for five river basins in the Midwest United States. These basins included the Cuyahoga, Raisin, Sandusky, Muskingum, and Vermilion basins in Michigan and Ohio. Further, canonical correlation analysis (CCA) was applied to the ANN models to improve the performance. The k-fold cross-validation method was then utilized to evaluate the proposed models based on two statistical indices, namely, the rRMSE and rBAIS, and the estimates were compared for four different k values (k = 3, 5, 7, and 10). According to the results, the EANN model seemed to produce better load estimations than the SANN model, and the CCA based EANN model tended to produce the best estimates among all of the proposed models in this study. The box plot data for the rRMSE index were also investigated, and the plot results indicated that increasing values of k tended to generate better estimates. Thus, the use of k = 10 is recommended for load estimations since this value was associated with better performances and less biased estimates.
In aquatic ecosystems, flow is one of the most essential elements of aquatic species. It is necessary to explore the correlation with ecological indices for the management guidelines of aquatic ecosystems using flow because aquatic ecosystem data are limited. This study calculated the flow metrics using the flow and analyzed the correlation between the flow metrics and the ecological index. This study attempted to understand the correlation between the ecologic index and flow metrics. Flow metrics were quantified flow in various ways, depending on the size, frequency, and design of the flow. The characteristics of flow metrics were identified and the correlation with the ecological index was studied. The Pearson correlation coefficient values for 22 watersheds were compared using the flow data from 2008 to 2015 and the ecological index data from the BMI. In watersheds with high imperviousness, the Pearson correlation coefficient was negative, which indicated that the correlation in this study provides basic data for the quantitative evaluation of the river ecosystem by identifying the relationship between imperviousness and BMI. As a result, the highest Pearson correlation coefficient values of flow metrics were related to the flow coefficient of variation (MACV13-16; MHCV; MLCV).
The quality of water has deteriorated due to urbanization and the occurrence of urban stormwater runoff. To solve this problem, this study investigated the pollutant reduction effects from the geometric and hydrological factors of green infrastructures (GIs) to more accurately design GI models, and evaluated the factors that are required for such a design. Among several GIs, detention basins and retention ponds were evaluated. This study chose the inflow, outflow, total suspended solids (TSS), total phosphorus (TP), watershed area, GI area (bottom area in detention basins and permanent pool surface area in retention ponds), and GI volume (in both detention basins and retention ponds) for analysis and applied both ordinary least squares (OLS) regression and multiple linear regression (MLR). The geometric factors do not vary within each GI, but there may be a bias due to the number of stormwater events. To solve this problem, three methods that involved randomly extracting data with a certain range and excluding outliers were applied to the models. The accuracies of these OLS and MLR models were analyzed through the percentage bias (PBIAS), Nash-Sutcliffe efficiency (NSE), and RMSE-observations standard deviation ratio (RSR). The results of this study suggest that models which consider the influent concentration combined with the hydrological and GI geometric parameters have better correlations than models that consider only a single parameter.
This study evaluated a fuzzy technique for order performance by similarity to ideal solution (TOPSIS) as a multicriteria decision making system that compensates for missing information with undefined weight factor criteria. The suggested Fuzzy TOPSIS was applied to ten potential dam sites in three river basins (the Han River, the Geum River, and the Nakdong River basins) in South Korea. To assess potential dam sites, the strategic environment assessment (SEA) monitored four categories: national preservation, endangered species, water quality, and toxic environment. To consider missing information, this study applied the Monte Carlo Simulation method with uniform and normal distributions. The results show that effects of missing information generation with one fuzzy set in GB1 site of the Geum River basin are not great in fuzzy positive-ideal solution (FPIS) and fuzzy negative-ideal solution (FNIS) estimations. However, the combination of two fuzzy sets considering missing information in Gohyun stream (NG) and Hoenggye stream (NH) sites of the Nakdong River basin has a great effect on estimating FPIS, FNIS, and priority ranking in Fuzzy TOPSIS applications. The sites with the highest priority ranking in the Han River, Geum River, and Nakdong River basins based on Fuzzy TOPSIS are the Dal stream 1 (HD1), Bocheong stream 2 (GB2) and NG sites. Among the sites in all river basins, the GB2 site had the highest priority ranking. Consequently, the results coincided with findings of previous studies based on multicriteria decision making with missing information and show the applicability of Fuzzy TOPSIS when evaluating priority rankings in cases with missing information.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.