Background Currently nanomedicines are the focus of attention from researchers and clinicians because of the successes of lipid-nanoparticles-based COVID-19 vaccines. Nanoparticles improve existing treatments by providing a number of advantages including protection of cargo molecules from external stresses, delivery of drugs to target tissues, and sustained drug release. To prevent premature release-related side effects, stable drug loading in nanoformulations is required, but the increased stability of the formulation could also lead to a poor drug-release profile at the target sites. Thus, researchers have exploited differences in a range of properties (e.g., enzyme levels, pH, levels of reduced glutathione, and reactive oxygen species) between non-target and target sites for site-specific release of drugs. Among these environmental stimuli, pH gradients have been widely used to design novel, responsive nanoparticles. Area covered In this review, we assess drug delivery based on pH-responsive nanoparticles at the levels of tissues (tumor microenvironment, pH ~ 6.5) and of intracellular compartments (endosome and lysosome, pH 4.5–6.5). Upon exposure to these pH stimuli, pH-responsive nanoparticles respond with physicochemical changes to their material structure and surface characteristics. These changes include swelling, dissociation, or surface charge switching, in a manner that favors drug release at the target site (the tumor microenvironment region and the cytosol followed by endosomal escape) rather than the surrounding tissues. Expert opinion Lastly, we consider the challenges involved in the development of pH-responsive nanomedicines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.