It is important not to overcalculate sample sizes for clinical trials due to economic, ethical, and scientific reasons. Kang and Kim (2014) investigated the accuracy of a well-known sample size calculation formula based on the approximate power for continuous endpoints in equivalence trials, which has been widely used for Development of Biosimilar Products. They concluded that this formula is overly conservative and that sample size should be calculated based on an exact power. This paper extends these results to binary endpoints for three popular metrics: the risk difference, the log of the relative risk, and the log of the odds ratio. We conclude that the sample size formulae based on the approximate power for binary endpoints in equivalence trials are overly conservative. In many cases, sample sizes to achieve 80% power based on approximate powers have 90% exact power. We propose that sample size should be computed numerically based on the exact power.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.