This paper describes the active power and frequencycontrol principles of multiple distributed generators (DGs) in a microgrid. Microgrids have two operating modes: 1) a grid-connected mode and 2) an islanded mode. During islanded operation, one DG unit should share output generation power with other units in exact accordance with the load. Two different options for controlling the active power of DGs are introduced and analyzed: 1) unit outputpower control (UPC) and 2) feeder flow control (FFC). Taking into account the control mode and the configuration of the DGs, we investigate power-sharing principles among multiple DGs under various system conditions: 1) load variation during grid-connected operation, 2) load variation during islanded operation, and 3) loss of mains (disconnected from the main grid). Based on the analysis, the FFC mode is advantageous to the main grid and the microgrid itself under load variation conditions. However, when the microgrid is islanded, the FFC control mode is limited by the existing droop controller. Therefore, we propose an algorithm to modify the droop constant of the FFC-mode DGs to ensure proper power sharing among DGs. The principles and the proposed algorithm are verified by PSCAD simulation.
This paper presents a new control method, in which a distributed generator (DG) actively participates in steady-state voltage control, together with an under-load tap changer (ULTC) and shunt capacitors (Sh.Cs). In the conventional DG control method, the integration of DGs into a distribution power system increases the number of switching operations of the ULTC and the Sh.Cs. To solve this problem, this paper proposes that the DG output voltage be dispatched cooperatively with the operation of the ULTC and the Sh.Cs, based on load forecasts for one day in advance. The objective of the proposed method is to decrease the number of switching device operations, as well as to reduce the power loss in the distribution lines, while maintaining the grid voltage within the allowed range. The proposed method is designed and implemented with MATLAB, using two different dynamic programming algorithms for a dispatchable and a nondispatchable DG, respectively. Simulation studies demonstrate that the objective can be achieved under various grid conditions, determined by factors such as the DG output power characteristics, the location of the DG-connected bus on the feeder, and the load profile of the feeder containing the DG.Index Terms-Dispatchable and nondispatchable distributed generator (DG), DG output voltage, dynamic programming, load forecasts, number of switching operations of under-load tap changer (ULTC) and shunt capacitors (Sh.Cs), power loss.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.