This paper proposes a novel method for sports video scene classification with the particular intention of video summarization. Creating and publishing a shorter version of the video is more interesting than a full version due to instant entertainment. Generating shorter summaries of the videos is a tedious task that requires significant labor hours and unnecessary machine occupation. Due to the growing demand for video summarization in marketing, advertising agencies, awareness videos, documentaries, and other interest groups, researchers are continuously proposing automation frameworks and novel schemes. Since the scene classification is a fundamental component of video summarization and video analysis, the quality of scene classification is particularly important. This article focuses on various practical implementation gaps over the existing techniques and presents a method to achieve high-quality of scene classification. We consider cricket as a case study and classify five scene categories, i.e., batting, bowling, boundary, crowd and close-up. We employ our model using pre-trained AlexNet Convolutional Neural Network (CNN) for scene classification. The proposed method employs new, fully connected layers in an encoder fashion. We employ data augmentation to achieve a high accuracy of 99.26% over a smaller dataset. We conduct a performance comparison against baseline approaches to prove the superiority of the method as well as state-of-the-art models. We evaluate our performance results on cricket videos and compare various deep-learning models, i.e., Inception V3, Visual Geometry Group (VGGNet16, VGGNet19) , Residual Network (ResNet50), and AlexNet. Our experiments demonstrate that our method with AlexNet CNN produces better results than existing proposals.
A smart grid is one of the most important applications in smart cities. In a smart grid, a smart meter acts as a sensor node in a sensor network, and a central device collects power usage from every smart meter. This paper focuses on a centralized data collection problem of how to collect every power usage from every meter without collisions in an environment in which the time synchronization among smart meters is not guaranteed. To solve the problem, we divide a tree that a sensor network constructs into several branches. A conflict-free query schedule is generated based on the branches. Each power usage is collected according to the schedule. The proposed method has important features: shortening query processing time and avoiding collisions between a query and query responses. We evaluate this method using the ns-2 simulator. The experimental results show that this method can achieve both collision avoidance and fast query processing at the same time. The success rate of data collection at a sink node executing this method is 100%. Its running time is about 35 percent faster than that of the round-robin method, and its memory size is reduced to about 10% of that of the depth-first search method.
ÃÃThe lack of as-built drawings and information for many old nuclear facilities impedes the planning for a decommissioning. Traditional manual walkthroughs subject workers to lengthy exposure to radiological and other hazards. And also there have been a delay in the dismantling schedules and that in an increase in the amount of waste, which have caused a heavy expenditure for the decommissioning cost. In order for a 3D model to represent the real dismantling operation environment, realistic dismantling activities and scenarios were modeled. We present a dismantling digital mock-up system that can show a dismantling process through an animation and enable us to evaluate the major parameters that can directly affect the cost in a static simulation as a preview to the dismantling activities on a hypothetical dismantling environment. We carried out a prototype 3D animation and a simulation system for dismantling the thermal column in Korean Research Reactor-1(KRR-1). The results show that the modeling of a realistic scenario makes it possible to demonstrate the adequacy of the design and can provide operators with a high fidelity under the real working conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.