This paper presents a method for simplifying and quantizing a deep neural network (DNN)-based object detector to embed it into a real-time edge device. For network simplification, this paper compares five methods for applying channel pruning to a residual block because special care must be taken regarding the number of channels when summing two feature maps. Based on the comparison in terms of detection performance, parameter number, computational complexity, and processing time, this paper discovers the most satisfying method on the edge device. For network quantization, this paper compares post-training quantization (PTQ) and quantization-aware training (QAT) using two datasets with different detection difficulties. This comparison shows that both approaches are recommended in the case of the easy-to-detect dataset, but QAT is preferable in the case of the difficult-to-detect dataset. Through experiments, this paper shows that the proposed method can effectively embed the DNN-based object detector into an edge device equipped with Qualcomm’s QCS605 System-on-Chip (SoC), while achieving a real-time operation with more than 10 frames per second.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.