For the last decade, it has been shown that neuroimaging can be a potential tool for the diagnosis of Alzheimer’s Disease (AD) and its prodromal stage, Mild Cognitive Impairment (MCI), and also fusion of different modalities can further provide the complementary information to enhance diagnostic accuracy. Here, we focus on the problems of both feature representation and fusion of multimodal information from Magnetic Resonance Imaging (MRI) and Positron Emission Tomography (PET). To our best knowledge, the previous methods in the literature mostly used hand-crafted features such as cortical thickness, gray matter densities from MRI, or voxel intensities from PET, and then combined these multimodal features by simply concatenating into a long vector or transforming into a higher-dimensional kernel space. In this paper, we propose a novel method for a high-level latent and shared feature representation from neuroimaging modalities via deep learning. Specifically, we use Deep Boltzmann Machine (DBM)1, a deep network with a restricted Boltzmann machine as a building block, to find a latent hierarchical feature representation from a 3D patch, and then devise a systematic method for a joint feature representation from the paired patches of MRI and PET with a multimodal DBM. To validate the effectiveness of the proposed method, we performed experiments on ADNI dataset and compared with the state-of-the-art methods. In three binary classification problems of AD vs. healthy Normal Control (NC), MCI vs. NC, and MCI converter vs. MCI non-converter, we obtained the maximal accuracies of 95.35%, 85.67%, and 74.58%, respectively, outperforming the competing methods. By visual inspection of the trained model, we observed that the proposed method could hierarchically discover the complex latent patterns inherent in both MRI and PET.
For a brain-computer interface (BCI) system, a calibration procedure is required for each individual user before he/she can use the BCI. This procedure requires approximately 20-30 min to collect enough data to build a reliable decoder. It is, therefore, an interesting topic to build a calibration-free, or subject-independent, BCI. In this article, we construct a large motor imagery (MI)-based electroencephalography (EEG) database and propose a subject-independent framework based on deep convolutional neural networks (CNNs). The database is composed of 54 subjects performing the left-and right-hand MI on two different days, resulting in 21 600 trials for the MI task. In our framework, we formulated the discriminative feature representation as a combination of the spectral-spatial input embedding the diversity of the EEG signals, as well as a feature representation learned from the CNN through a fusion technique that integrates a variety of discriminative brain signal patterns. To generate spectral-spatial inputs, we first consider the discriminative frequency bands in an information-theoretic observation model that measures the power of the features in two classes. From discriminative frequency bands, spectral-spatial inputs that include the unique characteristics of brain signal patterns are generated and then transformed into a covariance matrix as the input to the CNN. In the process of feature representations, spectral-spatial inputs are individually trained through the CNN and then combined by a concatenation fusion technique. In this article, we demonstrate that the classification accuracy of our subject-independent (or calibration-free) model outperforms that of subject-dependent models using various methods [common spatial pattern (CSP), common spatiospectral pattern (CSSP), filter bank CSP (FBCSP), and Bayesian spatiospectral filter optimization (BSSFO)].
As there has been a paradigm shift in the learning load from a human subject to a computer, machine learning has been considered as a useful tool for Brain-Computer Interfaces (BCIs). In this paper, we propose a novel Bayesian framework for discriminative feature extraction for motor imagery classification in an EEG-based BCI in which the class-discriminative frequency bands and the corresponding spatial filters are optimized by means of the probabilistic and information-theoretic approaches. In our framework, the problem of simultaneous spatiospectral filter optimization is formulated as the estimation of an unknown posterior probability density function (pdf) that represents the probability that a single-trial EEG of predefined mental tasks can be discriminated in a state. In order to estimate the posterior pdf, we propose a particle-based approximation method by extending a factored-sampling technique with a diffusion process. An information-theoretic observation model is also devised to measure discriminative power of features between classes. From the viewpoint of classifier design, the proposed method naturally allows us to construct a spectrally weighted label decision rule by linearly combining the outputs from multiple classifiers. We demonstrate the feasibility and effectiveness of the proposed method by analyzing the results and its success on three public databases.
In this paper, we present a comprehensive survey on applications of Support Vector Machines (SVMs) for pattern recognition. Since SVMs show good generalization performance on many real-life data and the approach is properly motivated theoretically, it has been applied to wide range of applications. This paper describes a brief introduction of SVMs and summarizes its numerous applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.