Face masks are used to protect the wearer from harmful external air and to prevent transmission of viruses from air exhaled by potentially infected wearers to the surrounding people. In this study, we examined the potential utility of masks for collecting viruses contained in exhaled breath and detected the collected viruses via various molecular tests. Using KF94 masks, the inner electrostatic filter was selected for virus collection, and an RNA extraction protocol was developed for the face mask. Virus detection in worn mask samples was performed using PCR and rolling circle amplification (RCA) tests and four different target genes (N, E, RdRp, and ORF1ab genes). The present study confirmed that the mask sample tests showed positive SARS-CoV-2 results, similar to the PCR tests using nasopharyngeal swab samples. In addition, the quantity of nucleic acid collected in the masks linearly increased with wearing time. These results suggest that samples for SARS-CoV-2 tests can be collected in a noninvasive, quick, and easy method by simply submitting worn masks from subjects, which can significantly reduce the hassle of waiting at airports or public places and concerns about cross-infection. In addition, it is expected that miniaturization technology will integrate PCR assays on face masks in the near future, and mask-based self-diagnosis would play a significant role in resolving the pandemic situation.
Respirators, called as face mask, have been used to protect the wearer from the outside harmful air environment and prevent any virus from being released to neighbors from potentially infected exhaled breath. The antiviral effectiveness of respirators has not only been researched scientifically, but has also become a global issue due to society's obligation to wear respirators. In this paper, we report the results of a study on the collection and detection of viruses contained in exhaled breath using respirators. The inner electrostatic filter was carefully selected for virus collection because it does not come in direct contact with either human skin or the external environment. In the study of a healthy control group, it was confirmed that a large amount of DNA and biomolecules such as exosomes were collected from the respirator exposed to exhalation, and the amount of collection increased in proportion to the wearing time. We conducted experiments using a total of 72 paired samples with nasopharyngeal swabs and respirator samples. Out of these samples, fifty tested positive for SARS-CoV-2 and twenty-two tested negative. The PCR results of the NPS and respirator samples showed a high level of agreement, with a positive percent agreement of ≥ 90% and a negative percent agreement of ≥ 99%. Furthermore, there was a notable level of concordance between RCA-flow tests and PCR when examining the respirator samples. These results suggest that this is a non-invasive, quick and easy method of collecting samples from subjects using a respirator, which can significantly reduce the hassle of waiting at airports or public places and concerns about cross-contamination. Furthermore, we expect miniaturized technologies to integrate PCR detection into respirators in the near future.
Generally, face mask have been used to protect the wearer from the outside harmful air environment and prevent any virus from being released to neighbors from potentially infected exhaled breath. The antiviral effectiveness of masks has not only been researched scientifically, but has also become a global issue due to society's obligation to wear masks. In this paper, we report the results of a study on the collection and detection of viruses contained in exhaled breath using face masks. The inner electrostatic filter was carefully selected for virus collection because it does not come in direct contact with either human skin or the external environment. In the study of a healthy control group, it was confirmed that a large amount of DNA and biomolecules such as exosomes were collected from the mask exposed to exhalation, and the amount of collection increased in proportion to the wearing time. For SARS-CoV-2 patients confirmed through the polymerase chain reaction (PCR) test using nasopharyngeal swabs, these mask tests with PCR and rolling circle amplification indicated the same positive results. The results suggest that this is a non-invasive, quick and easy method of collecting samples from subjects using a mask, which can significantly reduce the hassle of waiting at airports or public places and concerns about cross-contamination. Furthermore, we expect miniaturized technologies to integrate PCR detection into masks in the near future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.