Microphones for hearing aid systems are required to have high sensitivity, an appropriate bandwidth, and a wide dynamic range. In this paper, a high sensitivity microphone, 4 mm in diameter and using a multilayer graphene-PMMA laminated diaphragm that can be applied in hearing aids, is designed, optimized, and implemented. Typically, polyphenylene sulfide (PPS) has been used for the diaphragm of electret condenser microphones (ECM), and this method provides simple, low cost mass production. Generally, the sensitivity of the commercial 4 mm diameter ECM is about -30 to 35 dB (0 dB = 1 V/Pa). A microphone using a nanometer-thick graphene diaphragm has been found to have higher sensitivity than the conventional ECM. However, nanometer-thick multilayer graphene is vulnerable to large mechanical shocks or high sound pressures, and the practical production of nanometer-thick diaphragms also poses a challenge. However, if a multilayer graphene diaphragm of the same thickness as the conventional ECM is used, displacement during diaphragm vibration will be severely attenuated due to the high elastic modulus of graphene, and the microphone sensitivity will be greatly reduced. In this paper, we fabricate a multilayer graphene/poly(methyl methacrylate) (PMMA) laminated diaphragm with sensitivity higher than that of any other microphones currently available for hearing aids, with the appropriate bandwidth in the auditory range. The high sensitivity arises from the laminated structure of the thin graphene membrane with high elastic modulus and from the PMMA membrane with lower elastic modulus and higher dielectric constant. The optimal thickness ratio of the graphene-PMMA layered diaphragm was studied by both analytical and experimental methods, and then a fabricated diaphragm was assembled in a 4 mm diameter microphone package. The performance of the implemented microphone was evaluated, including the sensitivity and total harmonic distortion. It is demonstrated that the microphone using a multilayer graphene-PMMA diaphragm has an excellent sensitivity of -20 dB and a dynamic range of 90 dB, which is on average 9 dB higher than the microphone using the conventional ECM diaphragm.
With the advent of implantable hearing aids, the implementation and acoustic sensing strategy of the implantable microphone becomes an important issue. Previously, implantable microphones were inserted under the skin, which causes loud noise signals from touching or moving the skin. In this reported work, mounting a microphone in a drilled hole to the middle ear cavity is proposed. This method does not cause any skin movement problems or aesthetic problems. Furthermore, surgical operation is easy because the microphone can be mounted onto the drilled bone and does not need to be clipped or attached to the ossicular chain. From guinea pig experiments (n = 5), the loss of transmission from the proposed microphone observed was only 1.17 ± 0.36 and 5.04 ± 0.84 dB (mean ± std.) for the 0.2-1 and 3-4 kHz bands. The lowest minimum detectable sound pressure was measured as 27.7 dB SPL (SNR: 6 dB) at 3150 Hz without pinna or canal effects.
Input for fully implantable hearing devices (FIHDs) is provided by an implantable microphone under the skin of the temporal bone. However, the implanted microphone can be affected when the FIHDs user chews. In this paper, a dual implantable microphone was designed that can filter out the noise from mastication. For the in vivo experiment, a fabricated microphone was implanted in a rabbit. Pure-tone sounds of 1 kHz through a standard speaker were applied to the rabbit, which was given food simultaneously. To evaluate noise reduction, the measured signals were processed using a MATLAB program based adaptive filter. To verify the proposed method, the correlation coefficients and signal to-noise ratio before and after signal processing were calculated. By comparing the results, signal-to-noise ratio and correlation coefficients are enhanced by 6.07dB and 0.529 respectively.
With the advent of implantable hearing aids, implementation and acoustic sensing strategy of the implantable microphone becomes an important issue; among the many types of implantable microphone, placing the microphone in middle ear cavity (MEC) has advantages including simple operation and insensitive to skin touching or chewing motion. In this paper, an implantable microphone was implemented and researched feedback characteristic when both the implantable microphone and the transducer were placed in the MEC. Analytical and finite element analysis were conducted to design the microphone to have a natural frequency of 7 kHz and showed good characteristics of SNR and sensitivity. For the feedback test, simple analytical and finite element analysis were calculated and compared with in vitro experiments (n = 4). From the experiments, the open-loop gain and feedback factor were measured and the minimum gain margin measured as 14.3 dB.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.